Thursday, 26 January 2012

Jai Singh and the Jantar Mantar

Courtesy: Saudi Aramco World


                                                          Maharaja Sawai Jai Singh II



Jai Singh and the Jantar Mantar


Written and photographed by Paul Lunde
Additional photographs by Lester Brooks


In New Delhi, just behind famous Imperial Hotel, is a quiet and beautifully kept garden which contains six large, strange masonry structures. It is dominated by what appears to be a steep staircase to nowhere; even stranger are two cylindrical structures with central pillars and radial marble spokes. The visitor might be forgiven for thinking he had strayed into an exhibition of avant-garde sculpture, although these futuristic shapes have a solidity and a clean, functional beauty foreign to most contemporary art.
This a jantar mantar, or astronomical observatory. The structures are gigantic instruments for calculating the positions of heavenly bodies. It was built in 1724 by Jai Singh, Maharaja of Jaipur, at the request of the Moghul emperor Muhammad Shah.
Jai Singh was born in 1688, a year after the publication of Newton's Principia, and in 1700, when he was 11 years old, he succeeded his father as ruler of the small Rajasthani state of Amber. By the time of his death, he had increased his domains until they included most of what is now the modern province of Rajasthan. Although of course Hindu, he ruled as deputy for a number of Moghul emperors, the most important of whom was Muhammad Shah, who came to the throne in 1719.
Very little is known of Jai Singh's early years, of when or how he developed an interest in mathematics and astronomy. It is said that at the age of 13 he invented an ingenious method of raising water to irrigate the hanging gardens of Amber, the extraordinary fortress-palace in the mountains overlooking Jaipur.
Jai Singh was an accomplished scholar of both Sanskrit and Persian at an early age, and thus had direct access to both the Indian and the Islamic scientific traditions. He sponsored a number of translations into San -skrit of Arabic astronomical and mathematical works, and his library, the Pothi Khana in the beautiful City Palace of Jaipur, still contains 18 manuscripts of Islamic scientific works.
It is fascinating that Jai Singh's assistant, Samrat Jagan-nath, was commissioned to translate the fundamental work of Greek astronomy, Ptolemy's Mathematike Syn-taxis, into Sanskrit some 1500 years after the death of the author. Ptolemy lived in the middle of the second century of our era, and the Mathematike Syntaxis had been translated into Arabic in 827, under the name al-Majisti, or The Greatest - whence Almagest, the name the work was known by in the Lajjn Middle Ages. It was from the Arabic translation, probably in one of its revised forms, that Jagannath prepared the Sanskrit version.
Ptolemy's Almagest is perhaps the longest-lived and most influential textbook ever written. For almost a millennium and a half it dominated scholars' minds, and it was not until the 16th and 17th centuries that men like Tycho Brahe, Copernicus, Galileo and Sir Isaac Newton finally demolished the Ptolemaic view of the universe.
For the Almagest contained a fundamental error: Ptolemy believed that the earth was stationary and that the sun revolved around it. In order to make observation fit this mistaken model, Ptolemy had to resort to ingenious and complicated calculations. It is a tribute to his inventiveness that the result provided a perfectly adequate explanation of observed planetary movement -even though the basic premise was entirely mistaken.
The great Arab and Persian astronomers of the Middle Ages never seriously questioned the Ptolemaic model of the universe. Their efforts were concentrated on refining details of the system, elaborating Ptolemy's brilliant exposition of trigonometry and, particularly, in the design and fabrication of new and increasingly sensitive observational instruments.
It was this tradition of practical astronomy that interested Jai Singh. Books VII and VIII of the Almagest's 12 contain a list of the fixed stars of the northern and southern hemispheres, arranged by constellation. The latitude, longitude and magnitude, or apparent brightness, of each star is given. Altogether, Ptolemy catalogued 1022 stars - all, of course, visible with the naked eye, for the telescope lay some 1500 years in the future.
At various times, Islamic scholars sought to bring Ptolemy's star catalogue up to date, as well as to fix the positions of the stars more accurately as they refined new astronomical instruments. This was first done by the scholars of Gondeshapur, not far from Baghdad, in AD 800. An observatory was founded in Baghdad itself in 819 - perhaps the first true observatory since Alexandria - and a new star catalogue prepared. In the year 1000, a star catalogue was prepared at the observatory in Cairo for the Fatimid caliph al-Hakim, and in 1118 an astronomer named al-Khazini prepared another at the observatory of Nishapur, in today's Iran, which had been founded in 1074.
Similar efforts were made in Islamic Spain, where in 1080 the "Toledan Tables" were produced, to be followed in 1252 by the "Alfonsine Tables," prepared in Seville for Alfonso the Wise by Arab astronomers.
Seven years after the compilation of the Alfonsine Tables, far away to the east, in a small town in Azerbaijan called Maragha, a new and important star catalogue was prepared. Maragha was the preferred residence of Hulagu Khan, the grandson of Genghis, who in 1258 had sacked Baghdad and put an end to the Abbasid caliphate. Here Hulagu - who, perhaps surprisingly, was very interested in science - established an important observatory and placed it under the directorship of one of the leading scientists of the time, Nasir al-Din al-Tusi. His "Il-Khanid Tables," as they are called, were the most accurate so far produced. The instruments used at the Maragha observatory were described in detail by a Syrian instrument maker named Mu'ayyad al-Din al-'Urdi, so we know more about Maragha than any other observatory in the Islamic world.
It was also via Maragha that a knowledge of the Greco-Arab tradition of astronomy reached China, for China, like the eastern Islamic world, was under Mongol domination in the 13th century, and perhaps for the first time ideas flowed from the Islamic world to China rather than the reverse. An astronomer from Maragha was sent to China, and the dynastic chronicles of the Yuan record how he designed an instrument for observing the heavens and erected it on the Great Wall.
But the star catalogue that particularly interested Jai Singh was the most famous of all - the "Tables of Ulugh Beg." Ulugh Beg was the ruler of Turkestan and Transoxiana in the 15th century. In 1428 he built an observatory at Samarkand that was considered by his contemporaries one of the wonders of the world (See Aramco World , January-February 1990). The catalogue of 1018 fixed stars prepared under Ulugh Beg's auspices was the most accurate and detailed yet produced, and Jai Singh decided to bring it up to date, for in the 297 hijri years that separated the two rulers the observed position of the "fixed" stars had changed.
At first Jai Singh experimented with the small brass instruments normally used by Islamic astronomers, but he decided that their size was in itself a source of observational error. In the preface to his tables, which he named Zij Muhammad Shahi, in honor of his patron, he explains:
To carry out the order he had received... he constructed several of the instruments of an observatory like that of Samarkand, according to the books of the Muslims, such as a brass armillary sphere two meters [6.5 feet] in diameter, a two-ringed astrolabe [and others]. ...But he found that these brass instruments were not sufficiently accurate, because of their small size, the lack of division into minutes, the wearing of their axes, the displacement of their centers and the shifting of the planes of the instruments. He concluded that the observations of the ancients, men like Hipparchus and Ptolemy, were inaccurate because of this.
Some of the brass instruments used by Jai Singh still survive and are on display in the City Palace Museum in Jaipur and in the museum at Kotah. To counteract the errors which he believed to be the result of using relatively small instruments, Jai Singh decided to build very large stationary instruments in stone, with the graduations cut into the marble or limestone. These are the instruments that can still be seen at the jantar mantar in Delhi.





Jai Singh was not the first astronomer to attribute observational error to the small size of his instruments. The famous 11th-century historian and astronomer al-Biruni said, "It is impossible to fix the parts of the greatest circle by means of the smallest circle. I refer to the small-ness of the instruments of observation in comparison with the vastness of the bodies which are to be observed." And another Muslim astronomer wrote, "The larger the instrument, the more correct the observation."
Jai Singh claims to have invented three of the most imposing instruments in the jantar mantar himself, and this may well be true. It is also possible, however, that he had descriptions of similar instruments used in Ulugh Beg's observatory. Still speaking of himself in the third person, Singh says:
Therefore he built [in Delhi]... instruments he invented himself, such as the Jai Prakas, Ram Yantra and Samrat Yantra...with attention to the rules of geometry and taking care to adjust to the meridian and to the latitude of the place, and taking care in measuring and siting them so that inaccuracies from the shaking of the circles and wearing of the axes and displacement of their centers and the inequality in the marking of the minutes might be eliminated. Thus an accurate method of constructing an observatory was established and the difference between the calculated and observed positions of the fixed stars and planets through observation of their mean motions was eliminated.
The Samrat Yantra (Prince of Instruments) is the most immediately striking structure in the observatory, the staircase that seems to lead nowhere. In fact, it is nothing more than a gigantic equinoctial dial, or sundial. It consists of a stone gnomon, as the pointer of a sundial is called, whose hypotenuse is parallel to the earth's axis. On either side is a quadrant of a circle parallel to the plane of the equator, graduated in hours, minutes and degrees. When the sun rises, its shadow falls on the highesf point of the western quadrant and then descends until noon. The shadow then falls at the point where the eastern quadrant meets the gnomon, rises up that quadrant during the afternoon and reaches its highest point at sundown. The hour can be read off the quadrant where the shadow meets the marked gradations. A scale of tangents on the gnomon itself allows the sun's declination to be found.
The two circular structures, open at the top, with central pillars, slatted sides and radial marble spokes, are the Ram Yantra. They are complementary, and together form a single instrument, the gaps in the sides of one corresponding to the slats in the side of the other. They were used to find the altitude and azimuth of the sun, stars and planets. The distance from the top of the wall to the graduated floor is equal to the distance from the bottom of the wall to the central pillar. The top of the wall is counted as zero degrees; 45 degrees is marked by the juncture of wall and floor. At sunrise the shadow of the pillar falls on the top of the wall, indicating that the altitude of the sun is zero degrees. As morning wears on, the shadow moves down the side of the wall; the sun's altitude is 45 degrees when the shadow meets the juncture of the wall and the floor. When it is 90 degrees - vertical -there is no shadow at all. The azimuth, or horizontal angle, of the sun may be found by bisecting the thick shadow of the pillar as it falls on the gradations on the radial spokes of the floor. The altitude and azimuth of other heavenly bodies may be read by manipulating a thread tied to the central pillar.
The last two major instruments at the Delhi observatory are the Jai Prakas and the Misra Yantra. The Jai Prakas was used to find the position of the sun by means of the shadow cast by two intersecting wires on a concave hemisphere. The hemisphere was marked with altitude and azimuth circles, tropics and declination circles.
Misra Yantra means "mixed instrument," so-called because it combines different devices in one. The complex contains a smaller version of a sundial, a graduated semicircle for meridian altitudes, and a horizontal quadrant.
Jai Singh first became aware of advances in European astronomy while he was building the Delhi jantar mantar. As he himself says in the preface of the Zij Muhammad Shahi:
After seven years had been spent in this work, information was received that at about this time observatories had been built in Europe and that learned men in that country were carrying out this important work... and that they were constantly striving to determine with accuracy the subtleties of this science.
He obtained - perhaps from a Jesuit missionary - a copy of the French astronomer de la Hire's Tabulae Astro-nomicae, printed in 1702 and, at a slightly later date, those of the British astronomer John Flamsteed, a colleague of Newton and Halley. Flamsteed's Historia Coelestis Britan-nica lists the positions of almost 3000 stars, for Flamsteed was able to make use of the telescope, which seems to have been unknown to Jai Singh.
Flamsteed's great work also reprinted three earlier European star catalogues, so with that of Ulugh Beg, Jai Singh had a long series of observations available for purposes of comparison. Jai Singh claimed to have found an error of half a degree in the position of the moon in Flamsteed, as well as a small error in the times of solar and lunar eclipses. He attributed these errors to European use of small instruments.
Jai Singh's own copy of Flamsteed can still be seen in the Pothi Khana at Jaipur, and he may well have owned other European works. Yet he nowhere mentions the telescope - invented by Galileo in 1609 - or the fact that more than 200 years had passed since the Ptolemaic system had been dealt its death blow by Copernicus.
Yet Jai Singh sent at least one emissary to the king of Portugal, requesting him to send an astronomer to aid him; the king did send a medical man named Da Silva who had some knowledge of astronomy. It may be that Jai Singh neglected the stirring advances that had taken place in Europe because almost all the learned Europeans he came into contact with were Jesuit missionaries, who - theoretically, at least - would have considered Copernicus, Tycho Brahe and Galileo to be heretics. The works of Galileo, after all, were not removed from the church's Index of Prohibited Books until well into the 19th century. In 1727, Jai Singh began the construction of a new city, Jaipur, to replace Amber as capital; it became one of the most unusual cities in India, as well as one of the most beautiful. He built an observatory in Jaipur as well, much larger than that in Delhi and with many more instruments: the Samrat Yantra in Jaipur is over 27meters (almost 90 feet) high and some 44 meters (147 feet) long. The observatory also includes some fixed metal instruments, including two disc astrolabes two meters (6.5 feet) in diameter. Jai Singh built three other observatories as well, at Ujjain, Benares, and Muttra, so that readings in one place could be checked against readings in another.



His aims as an astronomer were relatively modest, despite the size and beauty of the instruments he constructed. He wished to bring Ulugh Beg's tables up to date and if possible make them more accurate; he wished to provide almanac makers with more accurate information; and finally, he wished to be able to tell time more accurately. The Jaipur observatory was used to establish the correct time right up to 1944.
But Jai Singh was probably mistaken in his belief that large instruments produced finer readings. He knew that Ulugh Beg had used a quadrant some 55 meters (180 feet) high to prepare his tables, and was influenced by the views of Arab astronomers on the subject. Yet he seems to have been unaware that advances in European astronomy had been made by recognizing the inevitability of error and seeking to minimize it through the use of the vernier, micrometer and telescopic sight.
Jai Singh came at the very end of a tradition - the Greco-Arab - that reached back to second-century Alexandria and beyond. The study of the instruments he used and a knowledge of their limitations contributes a great deal to the understanding of pre-telescopic astronomy and the problems faced by medieval astronomers. His jantar mantar at Delhi, and its counterparts at Jaipur, Ujjain and Benares, hint at what the famous observatories of Baghdad and Maragha must have looked like in their prime.
Bibliophile and historian Paul Lunde studied at London University's School of Oriental and African Studies, and now lives in Spain.


This article appeared on pages 32-40 of the March/April 1991 print edition of Saudi Aramco World.

PS: Click here to know the Indian Constellation names used by Jai singh on his observations:  

Indian equivalent names of various western constellations

Indian equivalent names of various western constellations: by: Ulugh Beg & Maharaja Jai Singh from Book of G.R. Kaye, Fellow of the Royal Astronomical Society , Honorary Correspondent of the Archaeological Department of India – Calcutta 1915

South Indian names  :
Mahavadya - Orion in kannada
Nataraja in Tamil
Lepus = Muyalava in Tamil 
Aquila - Garuda
Cannis major, minor = kalabairava Tamil
veena = lyra - Kannada
kinnara = crux - Kannada 

North Indian and Persian names ( Persian was court language for many Delhi Sultans and empires) . Some names are common for Southern India Especially the Zodiac signs and Ursa major.
 
Ursa Minor = Laghu Balu

Ursa Major = Saptarshayah

Draco: Sarpa

Cepheus = Kaikaus

Bootes – Avvapurusha

Corona Borealis = Ikalila

Hercules = Jasi

Lyra = Amgztz

Cygnus = Jayara

Cassiopeia = Jatulkurasi

Perseus = Varasavas

Auriga = Mamarak ul Azinai

Ophiucus = Havva

Serpens = Haiya

Sagitta = Sahama

Aquila = Ukab

Delphinus = Dalphaina

Equuleus = Asva Mukha

Pegasus = Vrihad asva khamda

Andromeda = Merat ul Musalasaloi

Triangulam = Musalastrikonamurttih

Aries = Mesha

Taurus = Vrisha

Gemini = Mithuna

Cancer = Kataka / Karka

Leo = Simha

Virgo = Kanya

Libra = Tula

Scorpio = Vrischika

Saggittarius = Dhanu

Capricornus = Makara

Aquarius = Kumbha

Pisces = Mina

Cetus = Kaitus

Orion = Javvara

Eridanus = Kulpa & in Sanskrit : srOtaswini. 'srotass'

Lepus = Arnava

Canis Major = Vrihat asvapamurttih

Canis Minor = Laghusvana

Argo Navis = Saphina Nauka

Hydra – Suja

Crater = Vatiya vahu guna patra

Centaurus = kamvuras

Lupus, ara, Crovus have no name here as they are part of their close constellations

Corona Australis = Mukuta

Piscis Austrinus – Machchhi yanuvi
  More Indian names of Constellations can be had here! 
1. http://www.constellation-names.at/l-in.htm
2. http://wiki.answers.com/Q/What_are_the_constellations_names_in_Hindi#slide1
 

Wednesday, 18 January 2012

மயிலாப்பூர் (பழமையான) கபாலீச்சுவரர் கோயில் பற்றிய குறிப்பு :

 நன்றி: சைவம் .அர்ஜு

மயிலாப்பூர் (பழமையான) கபாலீச்சுவரர் கோயில் பற்றிய குறிப்பு :

  • பழைய கோயில் இப்போது உள்ள Santhome Catherdral Church உள்ள இடத்திலுருந்தது. அருணகிரிநாதர் காலம் வரையில் (கி.பி.1450) கடற்கரையிலுருந்தது. "கடலக் கரைதிரை யருகேசூழ் மயிலைப் பதிதனில் உறைவோனே" என்ற திருப்புகழ்ப் பகுதியால் துலங்கும்.
  • கி.பி.1516-ல் மயிலாப்பூர் போர்த்துகீசியர் கையில் சிக்கியது. சில ஆண்டுகளுக்குள் ஆவர்கள் ஆலயத்தைத் தகர்த்துக், கோட்டையும், தங்கள் தொழுகைக்கு இடமும் கட்டிக்கொண்டார்கள். கி.பி.1672-க்கு முன்பு இப்போதுள்ள இடத்தில் இப்போதுள்ள ஆலயம் கட்டப்பட்டிருக்கிறது. இவ்வாண்டில் பிரெஞ்சுக்காரருக்கும் மூர் துருக்கருக்கும் நடந்த போரில் பிரெஞ்சு சேனையின் ஒரு பகுதி இப்போதுள்ள ஆலயத்தில் பதுங்கியிருந்த செய்தி, Vestiges of Old Madras என்ற நூலில் Vol.-I, Chap.24, பக்கம் 321, 322-ல் காணப்படுகிறது.
  • Santhome Cathedral சுமார் 1910ல் பழுது பார்க்க நிலத்தை அகழ்ந்தபோது பழைய சிவாலயத்தின் கற்களும் கல்வெட்டுக்களும் கிடைத்துள்ளன. அவை அரசாங்கத்தினரால் 215 - 223/1923 என்று குறிக்கப்பட்டுள்ளன. இவற்றுள், "Found on stone excavated below the Cathedral at Santhome" என்பன போன்ற குறிப்புக்கள் காணப்படுகின்றன.
  • இப்போதுள்ள ஆலயம் சுமார் 300 ஆண்டுகள் பழமையானது. இதற்கு முன்னிருந்த திருக்கோயில் கடற்கரையில் அமைந்திருந்தது. ("ஊர் திரை வேலை உலாவும் உயர் மயிலை", "மாசிக் கடலாட்டுக் கண்டான் கபாலீச்சரம் அமர்ந்தான்" - சம்பந்தர், "கடலக்கரை திரையருகே சூழ் மயிலைப் பதி உறைவோனே" - திருப்புகழ்). பழைய திருக்கோயில் ஐரோப்பியர்களால் இடிக்கப்பட்டு, பள்ளிகளும், சர்ச்ம், கோட்டைகளும் அமைத்துக் கொண்டார்கள். அவ்விடத்தில் தற்போது சாந்தோம் சர்ச் உள்ளது.
  • இடித்த பழைய கோயிலின் கற்களைக்கொண்டு புதுக்கோயில் தற்போது இருக்கும் இடத்தில் கட்டப்பட்டது. அப்போது கல்வெட்டுக்களின் அருமையை உணராது அவைகளைத் தாறுமாறாக இணைத்து விட்டார்கள். அப்படிப்பட்ட கல்வெட்டுக்கள் அம்மன் கோயிலில் ஐம்பது வரை இருக்கின்றன. சுவாமி கோயிலில் கல்வெட்டுக்கள் எதுவும் இல்லை.
  • அலங்கார மண்டபத்து முன்வாசல் தளத்தில் டச்சு எழுத்துக்கள் கொண்ட சில கற்கள் உள்ளன. பழுது பார்த்தபோது எடுத்த கற்களில் சில கல்வெட்டுக்கள் இருக்கின்றன. அவைகள் 1923-ம் ஆண்டு 215 முதல் 223 வரை எண்களாக அரசியார் பிரதி எடுத்திருக்கிறார்கள். அவைகளில் தமிழ் கல்வெட்டுக்களில் ஒன்றில் கூத்தாடு தேவர் (நடராஜர்) சன்னிதியில் தீபம் வைப்பதற்குச் செய்த தானமும், மற்றொன்றில் முதல் இராஜராஜன் மெய்க்கீர்த்தியாகிய "திருமகள்போல" என்ற தொடக்கமும், மூன்றாவதில் பூம்பாவை என்ற திருப்பெயரும் குறிக்கப்பட்டுள்ளன.
  • இக்கல்வெட்டுக்கள் ஒன்பது நூற்றாண்டுகளுக்கு முந்தியவை என அறியலாம்.
  • சிவநேசர் திருமயிலை கடற்கரையில் இருந்ததுமன்றி, கடலில் தோணியிலிருந்தே சரக்கு எடுக்கும் வண்ணமாக சரக்கறை கட்டியிருக்க வேண்டும் என்றும், அதற்குப் பின்புறம் அவர் குடியிருக்க வசதி இருந்திருக்க வேண்டும் என்றும் அறியக் கிடக்கின்றது.
  • ஈழ நாட்டுத் திருக்கோணமலை, துளுவ நாட்டுக் கோவை (Gova) முதலிய இடங்களில் பரங்கியர்கள் 400 ஆண்டுகளுக்கு முன் செய்த வண்ணமே இம்மயிலையிலும் பரங்கியர்கள் கோயிலையும், மனைகளையும் இடித்துப் பள்ளியும் கோட்டையும் கட்டியிருக்கக் கூடும் என்பது திண்ணம்.

மயிலாப்பூர் பற்றிய சரித்திரக் குறிப்புகள் :

  • H.D. Love என்பவர் எழுதிய சென்னைச் சரித்திரத்தில் 1516 முதல் போர்த்துக்கீசியர், துருக்க மூர்கள் பிரெஞ்சுக்காரர், டச்சுக்காரர் முதலியவர்கள் அடிக்கடி மாறிமாறி இவ்வூரைப் பிடித்துத் தம் வசப்படுத்திக் கொண்டு இருந்தார்கள் என அறியலாம். அந்நூலின்படி (Volume - I பக்கம் 321 - 322) பிரெஞ்சுக்காரருக்கும் துருக்கருக்கும் 1672-ல் ஒரு போர் நடந்தது. அப்போது பிரெஞ்சு சேனையின் ஒரு பகுதி கபாலீஸுவரர் சன்னிதியில் ஒளிந்து கொண்டதாம். ஆகவே, தற்கால கபாலீசுவரம் 1672லேயே இருந்தது எனலாம்.
  • 1798-ல் எழுதப்பட்ட சென்னை நகரப் (Map of Chennai) படத்தில் மயிலைத் திருக்குளம் காட்டப்பட்டிருக்கிறது.

  • "துறைக்கொண்ட செம்பவளம் இருளகற்றுஞ் சோதித் தொல்மயிலை...." என்று ஆரூரர் திருவாய் மலர்வதுபோல், இரண்டாயிரம் ஆண்டுகளுக்கு முன் டாலமி (Ptolemy) என்ற கிரேக்க ஆசிரியர் இயற்றிய பூகோள நூலில் Malliarpha எனப்படுவதே மயிலாப்பூர் என்று Vestiges of Old Madras Vol. - I chapter 23-ல் ஆசிரியர் H.D. Love கூறுகிறார். இரண்டாயிரம் ஆண்டுகட்கு முன் திருவள்ளுவர் வாழ்ந்தது மயிலையிலே. அவர் நண்பர் ஏலேல சிங்கர் கப்பல் வர்த்தகம் செய்ததும் இவ்விடத்தில்தான்.
  • 11-வது நூற்றாண்டின் கல்வெட்டு ஒன்றில் (256 / 1912) மயிலார்ப்பில் பல நானாதேசிகள் கூடிச் சில தீர்மானங்கள் செய்தனர் என்று காணப்படுகிறது.
  • துறைமுகப் பட்டினமாகிய ஒரு வியாபாரத் தலத்தில்தான், பல தேசத்து மக்கள் கூடுவர். எனவே, டாலமி காலம் முதல் கல்வெட்டுக் காலம் வரையில் மயிலாப்பூர் ஒரு துறைமுகமாக இருந்திருக்கிறது. போர்த்துக்கீசியர் காலத்திலும் இத்துறைமுகம் சிறந்து விளங்கியுள்ளது. இத்துறைமுகத்திற்கும், ஆங்கிலேயர் துறைமுகமாகிய சென்னையின் வடபாதிக்கும் ஓயாமல் வியாபாரப் போட்டியும், கடும்போரும் இருந்து வந்த செய்தி Vestiges of Old Madras Vol. - I என்ற நூலில் நன்கு விளங்கும்.
  • சங்க பல்லவன் கம்பவர்மன் காலத்திய கல்வெட்டொன்று (189/1912) மயிலாப்பூரில் அரச குடும்பத்தினர் வசித்ததைக் குறிக்கின்றது.
  • மயிலை வாசிகளாயிருந்த பல வியாபாரிகள் வேறு பல தலங்களைத் தரிசித்தபோது சந்தி விளக்கு, நந்தா விளக்குகட்குத் தானம் செய்த வரலாறுகள், பல கல்வெட்டுக்களால் அறியப்படுவதிலிருந்து, அவர்கள் சென்ற இடங்களிலெல்லம் தானம் செய்யக்கூடிய செல்வமும், புண்ணியமும் பெற்றிருந்தனர் என்பது புலனாகும்.
  • திருநாவுக்கரசர் தேவாரத்தில் மூன்றிடங்களில் மயிலாப்பு கூறப்பெறுகின்றது. திருவொற்றியூர் திருத்தாண்டகத்து ஆறாவது திருப்பாடலில் "வடிவுடைய மங்கையும் தாமும் எல்லாம் வருவாரை எதிர்கண்டோம் மயில்லப் புள்ளே" என்ற தொடர் சுவாமிகள் மயிலையிலிருந்தே ஒற்றியூர் சென்றார் என்று சேக்கிழார் கூறுவதற்கு அகச்சான்றாகின்றது. "மங்குன் மதி மாடவீதி மயிலாப்பிலுள்ளார்" (6-2-1) என்று அப்பர் பெருமான் மயிலையின் மாடவீதி அழகைப் புகழ்ந்துப்பாடுகிறார். "மயிலாப்பில் மன்னினார் மன்னி ஏத்தும்" (6-7-12) என்ற இடத்தில் மயிலையைக் காப்புத் தலங்களுள் வைத்துப் பாடுகிறார். மேற்சொன்ன மூன்றிடங்களிலும் அப்பர் பெருமான் மயில்லாப்பூரை மயிலாப்பு என்றே கூறுகிறார். சில கல்வெட்டுக்களிலும் (261/1910, 189/1912) மயிலாப்பில் என்றே காணப்படுகிறது. வேறு சில கல்வெட்டுக்களில் மயிலார்ப்பில் என்று "ரகர" ஒற்றுடன் காணப்படுகிறது(256/1912). டாலமியும் மல்லிஆர்பா என்பதில் "ரகர" ஒற்றுடன் கூறுகிறார்.

Sunday, 15 January 2012

வரிகள் - பா.விஜய்
படம் - ஆட்டோ கிராப் 2004

இயக்கம்  : சேரன்
இசை : பரத்வாஜ்





ஒவ்வொரு பூக்களுமே சொல்கிறதே
வாழ்வென்றால் போராடும் போர்க்களமே!

ஒவ்வொரு பூக்களுமே சொல்கிறதே
வாழ்வென்றால் போராடும் போர்க்களமே!

ஒவ்வொரு விடியலுமே சொல்கிறதே
இரவானால் பகலொன்று வந்திடுமே!
நம்பிக்கை என்பது வேண்டும் நம் வாழ்வில்,
இலட்சியம் நிச்சயம் வெல்லும் ஒரு நாளில்!

மனமே ஓ! மனமே! நீ மாறிவிடு!
மலையோ! அது பனியோ! நீ மோதிவிடு!

உள்ளம் என்பது எப்போதும்
உடைந்து போகக்கூடாது,
என்ன இந்த வாழ்க்கை என்ற
எண்ணம் தோன்றக்கூடாது!
எந்த மனிதன் நெஞ்சுக்குள்
காயமில்லை சொல்லுங்கள்!
காலப் போக்கில் காயமெல்லாம்
மறைந்து போகும் மாயங்கள்!

உளி தாங்கும் கற்கள் தானே
மண் மீது சிலையாகும்,
வலி தாங்கும் உள்ளம் தானே
நிலையான சுகம் காணும்!
யாருக்கில்லைப் போராட்டம்!
கண்ணில் என்ன நீரோட்டம்!
ஒரு கனவு கண்டால்
அதை தினம் முயன்றால்
ஒரு நாளில் நிஜமாகும்!

மனமே ஓ! மனமே! நீ மாறிவிடு!
மலையோ! அது பனியோ! நீ மோதிவிடு!

ஒவ்வொரு பூக்களுமே சொல்கிறதே
வாழ்வென்றால் போராடும் போர்க்களமே!

வாழ்க்கைக் கவிதை வாசிப்போம்
வானம் அளவு யோசிப்போம்
முயற்சி என்ற ஒன்றை மட்டும்
மூச்சு போல சுவாசிப்போம்!
இலட்சம் கனவு கண்ணோடு
இலட்சியங்கள் நெஞ்சோடு,
உன்னை வெல்ல யாரும் இல்லை
உறுதியோடு போராடு!

மனிதா! உன் மனதைக் கீறி
விதை போடு மரமாகும்
அவமானம் படு தோல்வி
எல்லாமே உரமாகும்!
தோல்வியின்றி வரலாறா!
துக்கம் என்ன என் தோழா!
ஒரு முடிவிருந்தால்
அதில் தெளிவிருந்தால்
அந்த வானம் வசமாகும்!

மனமே! ஓ! மனமே! நீ மாறிவிடு!
மலையோ அது பனியோ நீ மோதிவிடு!

ஒவ்வொரு பூக்களுமே சொல்கிறதே
வாழ்வென்றால் போராடும் போர்க்களமே!

ஒவ்வொரு விடியலுமே சொல்கிறதே
இரவானால் பகலொன்று வந்திடுமே!
நம்பிக்கை என்பது வேண்டும் நம் வாழ்வில்
இலட்சியம் நிச்சயம் வெல்லும் ஒரு நாளில்!


மனமே ஓ! மனமே! நீ மாறிவிடு!
மலையோ அது பனியோ? நீ மோதிவிடு!

Saturday, 14 January 2012

Ball projection of Sun for Transit of Venus

We will be having the last Venus transit of our lifetime this year and it will take 4 generations ( each generation is 30 years) to see it happen again! So, in order to bring the viewing to all at lowest cost, I experimented with some common available reflective objects like plain mirrors, plain mirror projected light through 90 mm magnifying glass, convex mirror, concave mirror, projection via convex and concave lenses!  I also did experimenting with flat front coated mirror and a VLFL  of 4 inch dia and 10 metre focus! 

A Small note on the Transit of Venus! 

The next transit of Venus will occur on June 5–June 6 in 2012, succeeding the previous transit on June 8, 2004. After 2012, the next transits of Venus will be in December 2117 and December 2125. Last one occurred on 2004. In 1874 it was calculated and observed purely by mathematics and using simple techniques as I have elaborated here by Pathani Samanta Chandrasekhar  also known as The Naked Eye Astronomer /Astrologer who's details can be found here!


A transit of Venus across the Sun takes place when the planet Venus passes directly between the Sun and Earth, becoming visible against (and hence obscuring a small portion of) the solar disk. During a transit, Venus can be seen from Earth as a small black disk moving across the face of the Sun. The duration of such transits is usually measured in hours (the transit of 2004 lasted six hours). A transit is similar to a solar eclipse by the Moon.


While the diameter of Venus is almost four times that of the Moon, Venus appears smaller, and travels more slowly across the face of the Sun, because it is much farther away from Earth. Observations of transits of Venus helped scientists use the principle of parallax to calculate the distance between the Sun and the Earth.

Transits of Venus are among the rarest of predictable astronomical phenomena. They occur in a pattern that repeats every 243 years, with pairs of transits eight years apart separated by long gaps of 121.5 years and 105.5 years. The periodicity is a reflection of the fact that the orbital periods of Earth and Venus are close to 8:13 and 243:395 resonances.

Before 2004, the last pair of transits were in December 1874 and December 1882. The first of a pair of transits of Venus in the beginning of the 21st century took place on 8 June 2004 and the next will be on 6 June 2012. After 2012, subsequent transits of Venus will be in December 2117 and December 2125.
A transit of Venus can be safely observed by taking the same precautions used when observing the partial phases of a solar eclipse. Staring at the brilliant disk of the Sun (the photosphere) with the unprotected eye can quickly cause serious and often permanent eye damage

Experimentation: 

Of all the materials' experimented: I have settled with

10 Cms FL Double Concave mirror of 50 mm dia or 2 “
Flat front coated mirror with 30’ FL!
Other projection technique like cone projection which is using large funnel or cone with a covering of tracing paper or a cinema screen!

Costs Item wise:

Concave mirror:
10 cms FL Concave mirror of 50 mm dia is costing Rs. 17 / 40 US Cents
Plastic ball 6 inch dia 10 Rs/ 20 US Cents
Chart paper 5 Rs / 10 US cents
A cardboard sheet 10 Rs/ 20 US Cents
Total cost: 42 Rs / 81 Cents US / 55 British Pence

Flat coated mirror:
Rectangular / Square Mirror of 2 inch dia is about Rs 100 or 2 USD if ordered in bulk not less than 100 pieces than Rs. 75 / 1.5 USD
VLFL: Rs. 400 / 8 USD
Ball of 6 inch dia: Rs. 10!
Chart paper: Rs. 5
A cardboard sheet: Rs. 10
Total cost: Rs. 525 or 10 USD or £ 7

Cone projection I am not elaborating now as it is deeply known to many!

Construction:

The construction of the ball projection is simple and easy. This method might have been known to many astronomers or they claim to know but sadly only few really attempt or experiment on such simple methods or tell others to experiment on such easy to use ones!

Since, I don’t have access to good solar telescopes or filters as what is available here is not of good or great quality as they are Chinese made and filters just fade out after 3 months of use! So, I was scratching my head on finding an easy way to see the spots and also to see the happening of transit!  



In Indian Institute of Astrophysics workshop on day time astronomy I was discussing various ideas with fellow amateur and professional astronomers and there I got a spark of idea from Navnirmiti a Poona / Kolapur based Indian astronomy group whom had placed a ball projection with a front coated mirror as an idea. They are into spreading of ancient Indian astronomy using simple aids! I just improvised that idea by using convex mirrors as it is easy to procure and almost every school will have one!          




Coming to our story, as flat coated and VLFL lens are bit costly and many will hesitate to buy also, there is a possibility of makers insisting only bulk supply, I wanted to use simple available alternatives. I wanted to test convex and concave mirrors and lenses! Hence, I bought 2 one metre and 10 Cms FL concave and convex mirrors and lenses. 



On my experimentations with candles which usually did in Physics labs, to ascertain the image quality and to get an idea of actual FL of the mirrors! I found that FL of concave mirror is about 1 to 2 times the actual marked FL. My 10 cms FL concave mirror had clear image at 20 cms! While 1 Metre FL produced good but small image at 2 metres! I am not going into formula as I never understood formula or maths! I just settle for practical and trial & error methods!

Now coming to construction:


This is by far the simplest method to project the Sun's image, which works because the sunlight’s intensity is so strong it outshines everything. This experiment can be done in any room which has a window or door opening outside, and which can be sufficiently darkened by putting dark cloth over the places from where light enters the room. Complete darkness is not necessary. 


Just how much darkness is needed you can discover for yourself by trial and error. However, the darker the room the better the results. If not use a white chart sheet glued to a cardboard or to a wall! I would suggest use of a large carton with one side flaps removed and a 6 – 7 inch dia hole created on one side as a window to see and photograph the casted image and a large square sheet of chart paper glued on the inside wall/flap of the carton as a screen! This contraption will be your dark room or projection studio! But in these carton and chart projection, willy nilly one has to project when the sun is shining and sharpness and contract will be low due to outshining sun light as in the image attached i.e for projection outside in a open area!




You can make a powerful sun telescope at very low cost with a plastic ball and mirror. The ball provides a sensitive but steady mount. As in any good telescope the mount is as important as the optics. The optics is provided by the pocket mirror / Concave or front coated mirror, if you don't have a hollow plastic ball, a watermelon or a pumpkin or a soccer ball can also provide a good mount. Just improvise! 




Make a small hole in the plastic ball and fill the hollow with sand as fully as possible. Seal the hole with tape. If using fruits or playing ball just glue to the object!
Now cover the mirror with an opaque paper screen except for a circular disc of diameter 2 cm at its centre. Your optics is ready. Fix the mirror on the ball with adhesive tape. I just glued to the ball and didn’t cover as covering a convex will affect the image projected.


A cylindrical ring or a packing tape spool forms the base for the ball and mirror. The ball can be set at any angle in its base. The sand inside adds to its weight and makes it stable. Your solar telescope is now ready for use.




                                             Ball Projector and VLFL
 







                                     VLFL placed in front of the ball projector.


     Image of the sun with Ball projector placed at 10 meters from the wall, without any aperture or lens.




Image of the Sun with Ball projector placed at 10 meters from the wall, VLFL placed in front of the ball projector

Place the ball and mirror on a stool outside the room in the sunshine. Adjust the angle of the mirror so that it projects the sun into the darkroom on a white screen. Increase the distance of the mirror from the screen to around 30-40 metres. At this distance you will get a nice big image of the sun around 35 cm in diameter. 


                                          Image as seen via front coated mirror and VLFL



                  Image via 50 mm 10 Cms FL double concave Mirror the spot
                                    is AR 1396 that was visible on 14/01/2012

Believe it or not, but with this simple projector you can actually see sunspots and some dark filaments on the sun. There are two ways to improve the resolution of the image. The first is to adjust the distance between the projector and the screen till you get the sharpest image of the sunspots.


The second is to improve the image far sharper and better we need to use a VLFL convex lens just on the FL and adjust the mirror and lens to get a clear image! (Further refinement can be obtained by using elliptical apertures on the mirror depending on the sun's position in the sky. But this is only for the perfectionists). For best results use trial and error, this always works better than theory. Practice now till May end and you will be ready for the 6th of June 2012. A point to note: to get round image the screen to be exactly opposite the mirror and sun to be diagonally on the other side left or right. Experimentations will make one to have better ideas!


  • I have made some improvements to the design
  • I have used 1 metre FL concave lens to get a erect image of 1 foot
  • we can also use convex but we'll get a inverted good image


This amazing little optical device is really a powerful telescope with which one can get sun images as large as one wishes, limited only by the size of your dark room and size of the lens or mirror. For very large image (one meter diameter, and even larger depending upon the size of the mirror) you will have to also increase the size of the mirror aperture. Use trial and error for best results. 


While I was discussing with my young astronomy friend Balaji Muthusubramaniam on projection. We got some idea on these:

1. Using a convex mirror of 10 cms FL
2. At FL point, place a concave lens of your desired FL
3. Try to see the image on the screen
4. we need to adjust the mirror and lens and screen depending on sun's position, so improvise by trial and error!

This image below is based on the idea suggested by balaji is not tested on ground by me but good on theory: I am discussing through him with some PhD research scholars of Indian Institute of Technology, Madras to get better and big image on a short distance. Hope for best! 





If using flat front coated mirror: Place the ball with mirror on a holder which is your tripod! Place the VLFL on its front diagonally and adjust both to get a good image! On VLFL: It is commonly believed that a convex lens concentrates the light from the Sun. This however is true only if the focal length is small. As the focal length of the lens increases the size of the Sun's image increases. The relation is the same as for a pinhole projector. Image diameter = focal length of lens / 110. For a very long focal length (VLFL), the diameter of the Sun's image can be quite large, larger than the lens itself. VLFL lenses with focal length of 4 metres and ten metres. The second lens gives a large image of the sun more than 9 cm in diameter. For a 90 mm diameter lens with a focal length of 10 metres, the image of the Sun will be larger than the lens itself, showing that a convex lens doesn't necessarily concentrate light. Using a VLFL convex lens, fixed within a cardboard shade with a hole cut in the centre, you can get a nice big image of the Sun on which sunspots & filaments are clearly visible, if the lens is of good quality.


There is another way to see the sun but this for those with a laptop: Take a small tube say 10 – 12 cms long not more than that! On one end place a short focal length lens and ensure it is covered with a solar film as seen in eclipse goggles! 




              Short length tube cam recorder and front coated mirror + VLFL

                                            Image as seen in the laptop!
Cover lens with that film and place it on one of the tube’s end and on the other end connect a cheap webcam or a CCTV cam! Remove all those coverings before inserting the cam into other open end and secure the cam with tapes and ensure the cam end is totally covered not to let an iota of light to enter inside the tube. Light’s only entry is through the filtered lens. Place it on a small tripod and connect to your laptop or PC, position it on the sun! If the chip is small then I am sure the image will be there for 10 mins atleast and if moves adjust slightly to get centre of the lens. One can see the spots, transiting planets and ISS and record the image! But one cannot see the prominences etc! Currently the front coated mirrors are being made by my friend Mr. Chander Devgan. I have used some of his images here with permission.


Good luck for you all on successful outcome on experimenting with these ideas! Also, good viewing during Venus eclipse. Here I am afraid the section might be lost due to advancement of south westerly monsoon as upto latitude 16 deg monsoon would have covered on that date and it would be overcast here at this latitude as monsoon usually settles over my city around June 6th with 6 days either side as probable dates of ingress!    

When Ice Remembered Fire — Comets, Oort Clouds, and Interstellar Wanderers

When Ice Remembered Fire — Comets, Oort Clouds, and Interstellar Wanderers When Ice Remembered Fire — Comets, Oort Clouds, and I...