Showing posts with label Astronomy. Show all posts
Showing posts with label Astronomy. Show all posts

Saturday 8 September 2012

Nakshatras in the Atharvaveda


In the Atharvaveda (Shaunakiya recension, hymn 19.7) a list of 28 stars or asterisms is given, many of them corresponding to the later nakshatras:

(1) Kṛttikā (the Pleiads), (2) Rohinī, (3) Mrigashīrsha, (4) Ārdrā, (5) Punarvasu, (6) Sūnritā, (7) Pushya, (8) Bhanu (the Sun), (9) Asleshā, (10) Maghā, (11) Svāti (Arcturus), (12) Chitrā (Spica), (13) Phalgunis, (14) Hasta, (15) Rādhas, (16) Vishākhā, (17) Anurādhā, (18) Jyeshthā, (19) Mūla, (20) Ashādhas, (21) Abhijit, (22) Sravana, (23) Sravishthās, (24) Satabhishak, (25) Proshtha-padas, (26) Revati, (27) Asvayujas, (28) Bharani.

The classical list of 27 nakshatras is first found in the Vedanga Jyotisha, a text dated to the final centuries BCE.

In Indian Astronomy including vedic astrology, there are various systems of enumerating 27 or 28 nakshatras/ stars. The following list of nakshatras gives the corresponding regions of sky, following Basham.
No. Name Associated stars Description Ashvini
"wife of the Ashvins" β and γ Arietis
  • Lord: Ketu (South lunar node)
  • Symbol : Horse's head
  • Deity : Ashvins, the horse-headed twins who are physicians to the gods
  • Indian zodiac: 0° - 13°20' Mesha
  • Western zodiac 26° Aries - 9°20' Taurus
2; 7 Bharani
"the bearer" 35, 39, and 41 Arietis
  • Lord: Shukra (Venus)
  • Symbol: Yoni, the female organ of reproduction
  • Deity: Yama, god of death or Dharma
  • Indian zodiac: 13° 20' - 26°40' Mesha
  • Western zodiac 9° 20' - 22° 40' Taurus
3 Krittika
an old name of the Pleiades; personified as the nurses of Kārttikeya, a son of Shiva. Pleiades
  • Lord: Surya (Sun)
  • Symbol: Knife or spear
  • Deity : Agni, god of fire
  • Indian zodiac: 26°40' Mesha - 10° Vrishabha
  • Western zodiac 22° 40' Taurus - 6° Gemini
4; 9 Rohini
"the red one", a name of Aldebaran. Also known as brāhmī Aldebaran
  • Lord: Chandra (Moon)
  • Symbol: Cart or chariot, temple, banyan tree
  • Deity : Brahma or Prajapati, the Creator
  • Indian zodiac: 10° - 23°20' Vrishabha
  • Western zodiac 6° - 19°20' Gemini
5; 3 Mrigashīrsha
"the deer's head". Also known as āgrahāyaṇī λ, φ Orionis
  • Lord: Mangala (Mars)
  • Symbol: Deer's head
  • Deity: Soma, Chandra, the Moon god
  • Indian zodiac: 23° 20' Vrishabha - 6° 40' Mithuna
  • Western zodiac: 19°20' Gemini - 2°40' Cancer
6; 4 Ardra
"the moist one" Betelgeuse
  • Lord: Rahu (North lunar node)
  • Symbol: Teardrop, diamond, a human head
  • Deity : Rudra, the storm god
  • Indian zodiac: 6° 40' - 20° Mithuna
  • Western zodiac: 2° 40' - 16° Cancer
7; 5 Punarvasu (dual)
"the two restorers of goods", also known as yamakau "the two chariots" Castor and Pollux
  • Lord: Guru (Jupiter)
  • Symbol : Bow and quiver
  • Deity : Aditi, mother of the gods
  • Indian zodiac: 20° Mithuna - 3°20' Karka
  • Western zodiac 16° - 29°20' Cancer
8; 6 Pushya
"the nourisher", also known as sidhya or tiṣya γ, δ and θ Cancri
  • Lord: Shani (Saturn)
  • Symbol : Cow's udder, lotus, arrow and circle
  • Deity : Bṛhaspati, priest of the gods
  • Indian zodiac: 3°20' -16°40' Karka
  • Western zodiac 29°20' Cancer - 12°40' Leo
9; 7 Āshleshā
"the embrace" δ, ε, η, ρ, and σ Hydrae
  • Lord: Budh (Mercury)
  • Symbol: Serpent
  • Deity : Sarpas or Nagas, deified snakes
  • Indian zodiac: 16°40' - 30° Karka
  • Western zodiac 12°40' - 26° Leo
10; 15 Maghā
"the bountiful" Regulus
  • Lord: Ketu (south lunar node)
  • Symbol : Royal Throne
  • Deity : Pitrs, 'The Fathers', family ancestors
  • Indian zodiac: 0° - 13°20' Simha
  • Western zodiac 26° Leo - 9°20' Virgo
11 Pūrva Phalgunī
"first reddish one" δ and θ Leonis
  • Lord: Shukra (Venus)
  • Symbol : Front legs of bed, hammock, fig tree
  • Deity : Bhaga, god of marital bliss and prosperity
  • Indian zodiac: 13°20' - 26°40' Simha
  • Western zodiac 9°20' - 22°40' Virgo
12 Uttara Phalgunī
"second reddish one" Denebola
  • Lord: Surya (Sun)
  • Symbol: Four legs of bed, hammock
  • Deity : Aryaman, god of patronage and favours
  • Indian zodiac: 26°40' Simha- 10° Kanya
  • Western zodiac 22°40' Virgo - 6° Libra
13 Hastam
"the hand" α, β, γ, δ and ε Corvi
  • Lord: Chandra (Moon)
  • Symbol: Hand or fist
  • Deity : Saviti or Surya, the Sun god
  • Indian zodiac: 10° - 23°20' Kanya
  • Western zodiac 6° - 19°20' Libra
14 Chitrai
"the bright one", a name of  Spica
  • Lord: Mangala (Mars)
  • Symbol: Bright jewel or pearl
  • Deity : Tvastar or Vishvakarman, the celestial architect
  • Indian zodiac: 23°20' Kanya - 6°40' Tula
  • Western zodiac: 19°20' Libra - 2°40' Scorpio
15 Svāti
name of Arcturus (of unknown derivation) Arcturus
  • Lord: Rahu (north lunar node)
  • Symbol: Shoot of plant, coral
  • Deity : Vayu, the Wind god
  • Indian zodiac: 6°40' - 20° Tula
  • Western zodiac 2°40' - 16° Scorpio
16; 14 Viśākhā
"forked, having branches"; also known as rādhā "the gift" α, β, γ and ι Librae
  • Lord: Guru (Jupiter)
  • Symbol : Triumphal arch, potter's wheel
  • Deity : Indra, chief of the gods; Agni, god of Fire
  • Indian zodiac: 20° Tula - 3°20' Vrishchika
  • Western zodiac 16° - 29°20' Scorpio
17 Anuradha
"following rādhā" β, δ and π Scorpionis
  • Lord: Shani (Saturn)
  • Symbol : Triumphal archway, lotus
  • Deity : Mitra, one of Adityas of friendship and partnership
  • Indian zodiac: 3°20' - 16°40' Vrishchika
  • Western zodiac 29°20' Scorpio - 12°40' Sagittarius
18; 16 Jyeshtha
"the eldest, most excellent" α, σ, and τ Scorpionis
  • Lord: Budh (Mercury)
  • Symbol : circular amulet, umbrella, earring
  • Deity : Indra, chief of the gods
  • Indian zodiac: 16°40' - 30° Vrishchika
  • Western zodiac 12°40' - 26° Sagittarius
19; 17 Mula
"the root" ε, ζ, η, θ, ι, κ, λ, μ and ν Scorpionis
  • Lord: Ketu (south lunar node)
  • Symbol : Bunch of roots tied together, elephant goad
  • Deity : Nirrti, goddess of dissolution and destruction
  • Indian zodiac: 0° - 13°20' Dhanus
  • Western zodiac 26° Sagittarius - 9°20' Capricorn
20; 18 Purva Ashadha
"first of the aṣāḍhā", aṣāḍhā "the invincible one" being the name of a constellation δ and ε Sagittarii
  • Lord: Shukra (Venus)
  • Symbol: Elephant tusk, fan, winnowing basket
  • Deity : Apah, god of Water
  • Indian zodiac: 13°20' - 26°40' Dhanus
  • Western zodiac 9°20' - 22°40' Capricorn
21 Uttara Ashadha
"second of the aṣāḍhā" ζ and σ Sagittarii
  • Lord: Surya (Sun)
  • Symbol : Elephant tusk, small bed
  • Deity : Visvedevas, universal gods
  • Indian zodiac: 26°40' Dhanus - 10° Makara
  • Western zodiac 22°40' Capricorn - 6° Aquarius
22; 20 Abhijit
"victorious"[5] α, ε and ζ Lyrae - Vega Lord: Brahma
23; 20 Shravana
α, β and γ Aquilae
  • Lord: Chandra (Moon)
  • Symbol : Ear or Three Footprints
  • Deity : Vishnu, preserver of universe
  • Indian zodiac: 10° - 23°20' Makara
  • Western zodiac 6° - 19°20' Aquarius
24; 21; 23 Shravishthā
"most famous", also Dhanishta "swiftest" α to δ Delphini
  • Lord: Mangala (Mars)
  • Symbol : Drum or flute
  • Deity : Eight vasus, deities of earthly abundance
  • Indian zodiac: 23°20' Makara - 6°40' Kumbha
  • Western zodiac 19°20' Aquarius - 2°40' Pisces
25; 22
Shatabhishaj
"requiring a hundred physicians" γ Aquarii
  • Lord: Rahu (north lunar node)
  • Symbol : Empty circle, 1,000 flowers or stars
  • Deity : Varuna, god of cosmic waters, sky and earth
  • Indian zodiac: 6°40' - 20° Kumbha ; Western zodiac 2°40' - 16° Pisces
26; 3 Purva Bhadrapada
"the first of the blessed feet" α and β Pegasi
  • Lord: Guru (Jupiter)
  • Symbol : Swords or two front legs of funeral cot, man with two faces
  • Deity : Ajikapada, an ancient fire dragon
  • Indian zodiac: 20° Kumbha - 3°20' Meena ; Western zodiac 16° - 29°20' Pisces
27; 4 Uttara Bhādrapadā
"the second of the blessed feet" γ Pegasi and α Andromedae
  • Lord: Shani (Saturn)
  • Symbol : Twins, back legs of funeral cot, snake in the water
  • Deity : Ahir Budhyana, serpent or dragon of the deep
  • Indian zodiac: 3°20' - 16°40' Meena ; Western zodiac 29°20' Pisces - 12°40' Aries
28; 5 Revati
"prosperous" ζ Piscium
  • Lord: Budh (Mercury)
  • Symbol : Fish or a pair of fish, drum
  • Deity : Pushan, nourisher, the protective deity
  • Indian zodiac: 16°40' - 30° Meena
  • Western zodiac 12°40' - 26° Aries
 Padas (quarters)

The 27 Nakshatras cover 13°20’ of the ecliptic each. Each Nakshatra is also divided into quarters or padas of 3°20’, and the below table lists the appropriate starting sound to name the child. The 27 nakshatras, each with 4 padas, give 108, which is the number of beads in a japa mala, indicating all the elements (ansh) of Vishnu:

# Name Pada 1 Pada 2 Pada 3 Pada 4 1 Aśvini (अश्विनि)) चु Chu चे Che चो Cho ला La 2 Bharaṇī (भरणी) ली Li लू Lu ले Le पो Lo 3 Kṛttikā (कृत्तिका) अ A ई I उ U ए E 4 Rohini(रोहिणी) ओ O वा Va/Ba वी Vi/Bi वु Vu/Bu 5 Mṛgaśīrsha (म्रृगशीर्षा) वे Ve/Be वो Vo/Bo का Ka की Ke 6 Ārdrā (आर्द्रा) कु Ku घ Gha ङ Ng/Na छ Chha 7 Punarvasu (पुनर्वसु) के Ke को Ko हा Ha ही Hi 8 Puṣya (पुष्य) हु Hu हे He हो Ho ड Da 9 Āshleṣā (आश्लेषा) डी Di डू Du डे De डो Do 10 Maghā (मघा) मा Ma मी Mi मू Mu मे Me 11 Pūrva or Pūrva Phalgunī (पूर्व फाल्गुनी) नो Mo टा Ta टी Ti टू Tu 12 Uttara or Uttara Phalgunī (उत्तर फाल्गुनी) टे Te टो To पा Pa पी Pi 13 Hasta (हस्त) पू Pu ष Sha ण Na ठ Tha 14 Citrā (चित्रा) पे Pe पो Po रा Ra री Ri 15 Svātī (स्वाति) रू Ru रे Re रो Ro ता Ta 16 Viśākhā (विशाखा) ती Ti तू Tu ते Te तो To 17 Anurādhā (अनुराधा) ना Na नी Ni नू Nu ने Ne 18 Jyeṣṭha (ज्येष्ठा) नो No या Ya यी Yi यू Yu 19 Mūla (मूल) ये Ye यो Yo भा Bha भी Bhi 20 Pūrva Ashādhā (पूर्वाषाढ़ा) भू Bhu धा Dha फा Bha/Pha ढा Dha 21 Uttara Aṣāḍhā (उत्तराषाढ़ा) भे Bhe भो Bho जा Ja जी Ji 22 Śrāvaṇa (श्र‌ावण) खी Ju/Khi खू Je/Khu खे Jo/Khe खो Gha/Kho 23 Śrāviṣṭha (श्रविष्ठा) or Dhaniṣṭha गा Ga गी Gi गु Gu गे Ge 24 Śatabhiṣā (शतभिषा)or Śatataraka गो Go सा Sa सी Si सू Su 25 Pūrva Bhādrapadā (पूर्वभाद्रपदा) से Se सो So दा Da दी Di 26 Uttara Bhādrapadā (उत्तरभाद्रपदा) दू Du थ Tha झ Jha ञ Da/Tra 27 Revatī (nakṣatra) (रेवती) दे De दो Do च Cha ची Chi

Titbits’ from ancient Indian Astronomy


Revolution of planets:

In a yuga1, the eastward revolutions of the sun are 43, 20,000 2; of the Moon 5, 77, 53,336; of the Earth 3 1,58,22,37,500; of the Saturn 1,46,564; of the Jupiter 3,64,224 of the Mars 22,96,824; of the Mercury and Venus, the same as those of the Sun; of the Moon’s apogee, 4,88,219; of the sighrocca of Mercury, 1,7937,020; of the sighrocca of Venus 70,22,388; of the sighrocca of the other planets. The same as those of the Sun; of the Moon’s ascending node in the opposite direction (i.e. westward), 2, 32,226.4.

These revolutions commenced at the beginning of the sign Aries on Wednesday at Sunrise at Lanka ( when it was the commencement of the current yuga 5) .

The Moon’s apogee is that point of the Moon’s orbit which is at the remotest distance from the Earth and the Moon’s ascending node is that point of the ecliptic where the Moon crosses it in its northward motion.

The sighroccas of Mercury and Venus are the imaginary bodies which are supposed to revolve around the Earth with the heliocentric mean angular velocities of Mercury and Venus respectively, their directions from the Earth being always the same as those of the mean positions of Mercury and Venus from the Sun. It will thus mean that the revolutions of Mars, the sighrocca of Mercury, Jupiter, the sighrocca of Venus and Saturn given above are equal to the revolutions of Mars, Mercury, Jupiter, Venus and Saturn respectively round the sun.

The following table gives the revolutions of the Sun, The Moon and the planets along with their periods of one sidereal revolution. The sidereal periods according to the Greek Astronomer Ptolemy (AD circa 100 – circa 178) and the modern astronomers are also given for the sake of comparison.



Mean motion of planets                   sidereal period  in terms of days  planet  revolutions in
43,20,000 years                                            Aryabatta I          Ptolemy 6         Modern 7

SUN    43,20,000                                             365.25868           365.24666      365.25636

Moon   5,77,53,336                                           27.32167               27.32167       27.32166

Moon's Apogee    4,88,219                                3231.98708          3231.61655  3232.37543

Moon's asc. Node   2,32,226                               6794.74951         6796.45587     6793.39108

Mars                      22,96,824                              686.99974              686.94462       686.9797


Sighrocca of Mercury  1,79,37,020                        87.96988               87.96935             87.9693

Jupiter                              3,64,224                        4332.27217          4330.96064         4332.5887

Sighrocca of Venus              70,22,388                     224.69814              224.6989           224.7008

Saturn                                     1,46,564                    10766.06465       10749.94640        10759.201




The epoch of the planetary motion mentioned in the text marks the beginning of the current yuga and not the beginning of current Kalpa as was supposed by P.C. Sengupta. The current Kalpa according to Aryabatta I, started on Thursday 1,98,28,80,000 years or 7, 24,44,75,70,625 days before the beginning of the current Kaliyuga began on Friday, February 18, 3102 BC at sunrise at Linka (a hypothetical place on the equator where the meridian of Ujjain intersects it), which synchronised with the beginning of the light half of the lunar (synodic) month of Caitra or Chitra.
One thing that deservs special notice is the statement of the Earth’s rotations. Aryabatta I is perhaps, the earliest Astronomer in India who advanced the theory of the Earth’s rotation and gave the number of rotations that the Earth perfoms in a period of 43, 20,000 years. That period of one sidereal  rotation of the Earth according to Aryabatta I’s value is 23h56m 4s .1. The corresponding modern value is 23h 56m 4s.091. The accuracy of the Aryabatta I’s value is remarkable.

The final two parts of his Sanskrit magnum opus the Aryabhatiya, which were named the Kalakriya ("reckoning of time") and the Gola ("sphere"), state that the Earth is spherical and that its circumference is 4,967 yojanas, which in modern units is 39,968 km (24,835 mi), which is close to the current modern equatorial value of 40,075 km (24,901 mi).
Of the other Indian astronomers who upheld the theory of the Earht’s rotation mention may be made of Prthudaka (AD 860) and Makkibhatta (AD 1377). In the Skanda-Purana (1.1.31.71), too, the Earth is described as revolviong like a Bhramarika (Spinning top/potter’s wheel / whirlpool).

The commentators of the Aryabhatiya, who hold the opinion that the Earth is stationary, think that Aryabatta I states the rotations of the Earth because the asterisms, which revolve westward around the earth by the force of the pro-vector wind, see that the Earth rotates eastward.

These commentators indeed were helpless because Aryabatta I’s theory of the Earth rotation received a severe blow at the hands if Varahamihira (d. AD 587) and Brahmagupta ( AD 628 ) whose arguments against this theory could not refuted by any Indian astronomer.

It is note worthy that the Greek astronomer Ptolemy, following Aristotle (384 – 322 BC), believed that the Earth was stationary and adduced arguments in support of his view.

  1. Yuga (Devanāgari: युग) in Hindu philosophy is the name of an 'epoch' or 'era' within a cycle of four ages. These are the Satya Yuga, the Treta Yuga, the Dvapara Yuga, and finally the Kali Yuga.
  2. Suppose to be a total period of kali yuga
  3. These are the rotations of the Earth eastward
  4. These very revolutions, excepting those of the Earth are stated in MBh. Vii. 1-5; LBh, i.9-14; and SiDvr, Grahaganitha. I, 3-6.
  5. Kali Yuga (Devanāgarī: कलियुग [kəli juɡə], lit. "age of [the demon] Kali", or "age of vice") is the last of the four stages the world goes through as part of the cycle of yugas described in the Indian scriptures. The other ages are Satya Yuga, Treta Yuga and Dvapara Yuga. The duration and chronological starting point in human history of Kali Yuga has given rise to different evaluations and interpretations. According to one of them, the Surya Siddhanta, Kali Yuga began at midnight (00:00) on 18 February 3102 BCE in the proleptic Julian calendar, or 23 January 3102 BC in the proleptic Gregorian calendar. This date is also considered by many Hindus to be the day that Krishna left Earth to return to his abode. Most interpreters of Hindu scriptures believe that Earth is currently in Kali Yuga. Many authorities such as Swami Sri Yukteswar, and Paramhansa Yogananda believe that it is now Dvapara Yuga. Many others like Aurbindo Ghosh have stated that Kali Yuga is now over. The Kali Yuga is sometimes thought to last 432,000 years, although other durations have been proposed.
  6. Taken from Bina Chatterjee, “The Khanda – Khadyaka of Brahmagupta “. World Press, Calcutta 1970 Vol 1, Appendix VII p 281.
  7. Taken from H.N. Russell, Dugan and J.Q. Stewart, Astronomy, Part 1: The Solar System, Revised editon, Ginn and Company, Boston, Appendix. Also The Sideral period of Moon’s apogee and ascending node are taken from P.C. Sengupta and N.C. Lahari’s introduction (P.xiv) to Babuaji Misra’s edition of Sripati Siddhanta sekhara.
  8. See W.M. Smart, Text book on Sperical Astronomy, Cambridge. 1940, p 420 & p 621 of Bharatiya Sastra Manjusha of M.S. Sreedharan

9. ( Sanskrit) ( both Sanskrit and Tamil months follow same line of calender days). The days are also similar to western days. Sunday to Saturday it same.
  1. Chaitra
  2. Vaishākha
  3. Jyaishtha
  4. Āshādha
  5. Shrāvana
  6. Bhaadra or, Bhādrapada
  7. Āshwini
  8. Kārtika
  9. Agrahayana or, Mārgashīrsha
  10. Pausha
  11. Māgha
  12. Phālguna
Tamil:
Tamil Calendar consists of 12 months starts with ‘Chithirai’ ends with ‘Panguni’.

It is a Solar Calendar, whose dates indicate the position of the earth on its revolution around the sun.
So the number of days varies between 29 and 32.
The following list compiles the months of the Tamil Calendar.


    Tamil                                 Gregorian Calendar equivalent        Western
1  Chithirai       mid-April to mid-May                                                           Aries
2  Vaikasi        mid-May to mid-June                                                           Taurus 
3  Aani           mid-June to mid-July                                                            Gemini
4  Aadi             mid-July to mid-August                                                      Cancer
5  Aavani       mid-August to mid-September                                            Leo
6  Puratasi    mid-September to mid-October                                             Virgo
7  Aippasi     mid-October to mid-November                                            Libra
8  Karthikai  mid-November to mid-December                                         Scorpio
9 Markazhi      mid-December to mid-January                                         Sagittarius
10 Thai        mid-January to mid-February                                              Capricorn
11 Masi      mid-February to mid-March                                                    Aquarius
12 Pankuni   mid-March to mid-April                                                       Pisces

Sunday - Nayiru or ravi var or Solar day
Monday - Thingal or somavar or Moon's day
Tuesday - Sevvai  or mangalvar or Mars day
Wednesday - Bhudan or budhvar or  Mercury day
Thursday - Vizayan or Birgaspathi var or guruvar or Jupiter day
Friday - Velli or Sukkravar or Venus day
Saturday - Sani / kari or Sani var or Saturn day

Lesser known facts of our mother system - the solar system


Major source : Wikipedia



Solar System Statistics
Sun a third generation star

Diameter of the Solar System: presently unknown (possibly 2 to 4 light years)
Distance from centre of Galaxy: 25 million light years
Orbital Period: 250 million years
Age: 4.6 billion years

Number of Planets: 8
Number of Dwarf Planets: 5
Number of Moons: 173

Rocky Planets: Mercury, Venus, Earth and Mars
Gas Giants: Jupiter, Saturn, Uranus and Neptune
Dwarf Planets: Ceres, Pluto, Haumea, MakeMake and Eris

Nearest Planet to Sun: Mercury (58 million km)
Farthest Planet from Sun: Neptune (4.5 billion km)
Farthest Man Made Object from Sun: Voyager 1 (17 billion km)
Largest Planet: Jupiter (Diameter 142,984 km)
Smallest Planet: Mercury (Diameter 4,879 km)

Largest Moon: Ganymede (Diameter 5,262 km)
Smallest Moon: S/2003 J 9 and S/2003 J 12 (Diameter 1 km)

Greatest Planetary Gravity: Jupiter (20.87 m/s2)
Greatest Planetary Density: Earth (5.515 g/cm3)
Greatest Planetary Mass: Jupiter (1.8987 x 1027 kg)
Greatest Planetary Volume: Jupiter (1.4255 x 1015 km3)

Lowest Planetary Gravity: Mars (3.693 m/s2)
Lowest Planetary Density: Saturn (0.7 g/cm3)
Lowest Planetary Mass: Mercury (3.3022 x 1023 kg)
Lowest Planetary Volume: Mercury (6.08272 x 1010 km3)

Earth in the Universe
Feature Size Notes Sources
Earth 12,700 km in diameter Our planet. [3]
Geospace 63,000 km Sunward side;
6,300,000 km trailing side The space dominated by Earth's magnetic field. [4] Orbit of the Moon 7,70,000 km across The average diameter of the orbit of the Moon relative to the Earth. [5]
Earth's orbit 300 million km across
2 AU[a] The average diameter of the orbit of the Earth relative to the Sun.
Contains the Sun, Mercury and Venus. [6] Inner Solar System 6 AU across Contains the Sun, the inner planets (Mercury, Venus, Earth, Mars) and the asteroid belt. [7] Outer Solar System 60 AU across Surrounds the inner Solar System; comprises the outer planets (Jupiter, Saturn, Uranus, Neptune). [8] Kuiper belt 96 AU across Belt of icy objects surrounding the outer solar system. Contains the dwarf planets Pluto, Haumea and Makemake. [9] Heliosphere 160 AU across Maximum extent of the Solar wind and the interplanetary medium. [10][11] Scattered disk 200 AU across Region of sparsely scattered icy objects surrounding the Kuiper belt. Contains the dwarf planet Eris. [12]
Oort cloud[b] 100,000–200,000 AU across
2–4 light-years[c] Spherical shell of over a trillion comets. [13] Solar System 4 light-years across Our home planetary system. At this point, the Sun's gravity gives way to that of surrounding stars. [14] Local Interstellar Cloud 30 light-years across Interstellar cloud of gas through which the Sun and a number of other stars are currently travelling.[d] [15]
Local Bubble 210–815 light-years across Cavity in the interstellar medium in which our Sun and a number of other stars are currently travelling.[d]
Caused by a past supernova. [16][17] Gould Belt 3,000 light-years across Ring of young stars through which our Sun is currently travelling.[d] [18]
Orion Arm 10,000 light-years in length The spiral arm of the Milky Way Galaxy through which our Sun is currently travelling.[d]
[19] Orbit of the Solar System 56,000 light years across The average diameter of the orbit of the Solar System relative to the Galactic Centre. Our Sun's orbital radius is roughly 28,000 light years, or slightly over half way to the galactic edge. One orbital period of our Solar System lasts between 225 and 250 million years. [20][21] Milky Way Galaxy 100,000 light-years across Our home galaxy, composed of 200 billion to 400 billion stars and filled with the interstellar medium. [22][23]
Milky Way subgroup 1.64 million light-years across
0.5 megaparsecs[e] The Milky Way and those satellite galaxies gravitationally bound to it, such as the Sagittarius Dwarf, the Ursa Minor Dwarf and the Canis Major Dwarf. Cited distance is the orbital diameter of the Leo I Dwarf galaxy, the most distant galaxy in the Milky Way subgroup. [24][25] Local Group 3 megaparsecs across Group of at least 47 galaxies. Dominated by Andromeda (the largest), The Milky Way and Triangulum; the remainder are small dwarf galaxies. [26] Virgo Supercluster 33 megaparsecs across The supercluster of which our Local Group is a part; comprises roughly 100 galaxy groups and clusters. [27][28] Pisces-Cetus Supercluster Complex 300 megaparsecs across The galaxy filament of which the Virgo Supercluster is a part. [29] Observable universe 28,000 megaparsecs across The large-scale structure of the universe consists of more than 100 billion galaxies, arranged in millions of superclusters, galactic filaments, and voids, creating a foam-like superstructure. [30][31]
Universe Minimum of 28,000 megaparsecs Beyond the observable universe lies the unobservable regions where no light from those regions has reached the Earth yet. No information is available about the region, as light is the fastest travelling medium of information. However, since there is no reason to suppose different natural laws, the universe is likely to contain more galaxies in the same foam-like superstructure.
a 1 AU or astronomical unit is the distance between the Earth and the Sun, or 150 million km. Earth's orbital diameter is twice its orbital radius, or 2 AU.b Existence is hypothetical.c One light-year is the distance light travels in a year; equivalent to ~9.5 trillion km or 63,240 AUd The Sun is not gravitationally tied to any larger structures within the Galaxy.[32] These regions simply mark its current location in its orbit around the Galactic centre.e One megaparsec is equivalent to one million parsecs or 3.26 million light-years. A parsec is the distance at which a star's parallax as viewed from Earth is equal to one second of arc.

Taking the Oort Cloud into consideration will increase the number a great deal. But my understanding is that the Apha-Centauri system lies with 5 light years of our Sun.

http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/970717b.html


http://www.thenakedscientists.com/HTML/content/latest-questions/question/1115/


References

  1. ^ Robert P Kirshner (2002). The Extravagant Universe: Exploding Stars, Dark Energy and the Accelerating Cosmos. Princeton University Press. p. 71. ISBN 0-691-05862-8.
  2. ^ Klaus Mainzer and J Eisinger (2002). The Little Book of Time. Springer. ISBN 0-387-95288-8.. P. 55.
  3. ^ Various (2000). David R. Lide. ed. Handbook of Chemistry and Physics (81st ed.). CRC. ISBN 0-8493-0481-4.
  4. ^ Amara Graps (2000). "The Earth's Magnetosphere". Max Planck Institute. Retrieved 2009-10-02.
  5. ^ NASA Moon factsheet and NASA Solar System Exploration Moon Factsheet NASA Retrieved on 2008-11-17
  6. ^ NASA Earth factsheet and NASA Solar System Exploration Factsheet NASA Retrieved on 2008-11-17
  7. ^ Petit, J.-M.; Morbidelli, A.; Chambers, J. (2001). "The Primordial Excitation and Clearing of the Asteroid Belt" (PDF). Icarus 153 (2): 338–347. Bibcode 2001Icar..153..338P. doi:10.1006/icar.2001.6702. Retrieved 2007-03-22.
  8. ^ NASA Neptune factsheet and NASA Solar System Exploration Neptune Factsheet NASA Retrieved on 2008-11-17
  9. ^ M. C. De Sanctis, M. T. Capria, and A. Coradini (2001). "Thermal Evolution and Differentiation of Edgeworth–Kuiper Belt Objects". The Astronomical Journal 121 (5): 2792–2799. Bibcode 2001AJ....121.2792D. doi:10.1086/320385. Retrieved 2008-08-28.
  10. ^ NASA/JPL (2009). "Cassini's Big Sky: The View from the Center of Our Solar System". Retrieved 2009-12-20.
  11. ^ Fahr, H. J.; Kausch, T.; Scherer, H.; Kausch; Scherer (2000). "A 5-fluid hydrodynamic approach to model the Solar System-interstellar medium interaction" (PDF). Astronomy & Astrophysics 357: 268. Bibcode 2000A&A...357..268F. See Figures 1 and 2.
  12. ^ "JPL Small-Body Database Browser: 136199 Eris (2003 UB313)". 2008-10-04 last obs. Retrieved 2009-01-21. (Aphelion of Eris, the farthest known scattered disk object)
  13. ^ Alessandro Morbidelli (2005). "Origin and dynamical evolution of comets and their reservoirs". arXiv:astro-ph/0512256 [astro-ph].
  14. ^ Littmann, Mark (2004). Planets Beyond: Discovering the Outer Solar System. Courier Dover Publications. pp. 162–163. ISBN 978-0-486-43602-9.
  15. ^ Mark Anderson, "Don't stop till you get to the Fluff", New Scientist no. 2585, 6 January 2007, pp. 26–30
  16. ^ DM Seifr et al; Lallement; Crifo; Welsh (1999). "Mapping the Countours of the Local Bubble". Astronomy and Astrophysics 346: 785–797. Bibcode 1999A&A...346..785S.
  17. ^ Local Chimney and Superbubbles, Solstation.com
  18. ^ S. B. Popov, M. Colpi, M. E. Prokhorov, A. Treves and R. Turolla (2003). "Young isolated neutron stars from the Gould Belt". Astronomy and Astrophysics 406 (1): 111–117. arXiv:astro-ph/0304141. Bibcode 2003A&A...406..111P. doi:10.1051/0004-6361:20030680. Retrieved 2009-10-02.
  19. ^ Harold Spencer Jones, T. H. Huxley, Proceedings of the Royal Institution of Great Britain, Royal Institution of Great Britain, v. 38–39
  20. ^ Eisenhauer, F.; et al. (2003). "A Geometric Determination of the Distance to the Galactic Center". Astrophysical Journal 597 (2): L121–L124. arXiv:astro-ph/0306220. Bibcode 2003ApJ...597L.121E. doi:10.1086/380188.
  21. ^ Leong, Stacy (2002). "Period of the Sun's Orbit around the Galaxy (Cosmic Year)". The Physics Factbook.
  22. ^ Christian, Eric; Samar, Safi-Harb. "How large is the Milky Way?". Retrieved 2007-11-28.
  23. ^ Frommert, H.; Kronberg, C. (August 25, 2005). "The Milky Way Galaxy". SEDS. Retrieved 2007-05-09.
  24. ^ I. D. Karachentsev, V. E. Karachentseva, W. K. Hutchmeier, D. I. Makarov (2004). "A Catalog of Neighboring Galaxies". Astronomical Journal 127 (4): 2031–2068. Bibcode 2004AJ....127.2031K. doi:10.1086/382905.
  25. ^ Andreas Brunthaler, Mark J. Reid, et. al. (4 March 2005). "The Geometric Distance and Proper Motion of the Triangulum Galaxy (M33)". Science 307 (5714): 1440–1443. arXiv:astro-ph/0503058. Bibcode 2005Sci...307.1440B. doi:10.1126/science.1108342. PMID 15746420.
  26. ^ "The Local Group of Galaxies". University of Arizona. Students for the Exploration and Development of Space. Retrieved 2009-10-02.
  27. ^ cfa.harvard.edu, The Geometry of the Local Supercluster, John P. Huchra, 2007 (accessed 12-12-2008)
  28. ^ "Stars, Galaxies and Cosmology". Department of Mathematics, University of Auckland. Retrieved 2009-10-03.
  29. ^ John noble Wilford (1987-11-10). "Massive Clusters of Galaxies Defy Concepts of the Universe". New York Times. Retrieved 2009-11-01.
  30. ^ Mackie, Glen (2002-02-01). "To see the Universe in a Grain of Taranaki Sand". Swinburne University. Retrieved 2006-12-20.
  31. ^ Lineweaver, Charles; Tamara M. Davis (2005). "Misconceptions about the Big Bang". Scientific American. Retrieved 2008-11-06.
  32. ^ "How often does the Sun pass through a spiral arm in the Milky Way?". Cornell University. Retrieved 2009-10-03.

Earth's location in the universe

Earth → Solar System → Local Interstellar Cloud → Local Bubble → Gould Belt → Orion–Cygnus Arm → Milky Way → Milky Way subgroup → Local Group → Virgo Supercluster → Pisces-Cetus Supercluster Complex → Observable universe → Universe

Each arrow should be read as "within" or "part of".

Friday 10 February 2012

Archaeoastronomy in India by Subhash Kak Oklahoma State University


 This article is a verbatim reproduction of article by Subhash Kak. As his contact details not known I am not able to contact him. this post will be deleted if there is an written objection by him. 



Archaeoastronomy in India


Subhash Kak
Oklahoma State University, Stillwater



Our  understanding  of  archaeoastronomical  sites  in  India  is  based  not  only  on  a  rich  archaeological record and texts that go back thousands of years, but also on a living tradition that is connected to the past. Conversely,  India  has  much  cultural  diversity  and  a  tangled  history  of  interactions  with neighboring regions that make the story complex. The texts reveal to us the cosmological ideas that lay behind  astronomical  sites  in  the  historical  period  and  it  is  generally  accepted  that  the  same  idea  also apply to the Harappan era of the third millennium BCE (Kenoyer, 1998: 52‐53).
In the historical period, astronomical observatories were part of temple complexes where the king was
consecrated. Such consecration served to confirm the king as foremost devotee of the chosen deity, who
was taken to be the embodiment of time and the universe (Kak, 2002a: 58). For example, Udayagiri is an
astronomical site connected with the Classical age of the Gupta dynasty (320‐500 CE), which is located a
few kilometers from Vidisha in central India (Willis, 2001; Dass and Willis, 2002). The imperial Guptas
enlarged  the  site,  an  ancient  hilly  observatory  going  back  at  least  to  the  2
nd  century  BCE  at  which
observations  were  facilitated  by  the  geographical  features  of  the  hill,  into  a  sacred  landscape  to  draw
royal authority.
Indian  astronomy  is  characterized  by  the  concept  of  ages  of  successive  larger  durations,  which  is  an
example  of  the  pervasive  idea  of  recursion,  or  repetition  of  patterns  across  space, scale  and  time.    An
example of this is the division of the ecliptic into 27 star segments (nakshatras), with which the moon is
conjoined  in  its  monthly  circuit,  each  of  which  is  further  sub‐divided  into  27  sub‐segments  (
upa‐
nakshatras),  and  the  successive  divisions  of  the  day  into  smaller  measures  of  30  units.  The  idea  of
recursion underlies the concept of the sacred landscape and it is embodied in Indian art, providing an
archaeoastronomical  window on sacred and monumental  architecture.  It appears that this  was an old
idea  because  intricate  spiral  patterns,  indicating  recursion,  are  also  found  in  the  paintings  of  the
Mesolithic period. Tyagi (1992) has claimed that they are unique to Indian rock art.

According to the Vāstu Shāstra, the structure of the building mirrors the emergence of cosmic order out of  primordial  chaos  through  the  act  of  measurement.    The  universe  is  symbolically  mapped  into  a square that emphasizes the four cardinal directions. It is represented by the square vāstu‐mandala, which in its various forms is the basic plan for the house and the city.  There exist further elaborations of this plan, some of which are rectangular.
It  is  significant  that  yantric  buildings  in  the  form  of  mandalas  have  been  discovered  in  North
Afghanistan that belong to a period that corresponds to the late stage of the Harappan tradition (Kak,
2000a;  Kak,  2005b)    providing  architectural  evidence  in  support  of  the  idea  of  recursion  at  this  time.
Although  these  building  are  a  part  of  the  Bactria‐Margiana  Archaeological  Complex  (BMAC),  their
affinity  with  ideas  that  are  also  present  in  the  Harappan  system  shows  that  these  ideas  were  widely
spread.







                                                                                                                                                                                            






Contents

1.     Chronology and Overview
2.     Pre‐historical and Harappan Period
3.     Neolithic and Megalithic Sites
4.     The Plan of the Temple
5.     Observatory in Udayagiri
6.     Pilgrimage Complexes
7.     Sacred Cities
8.     Conclusions


1.  Chronology and Overview

India’s archaeological record in the northwest has unbroken continuity going back to about 7500 BCE at
Mehrgarh (Kenoyer, 1998; Lal, 2002), and it has an rock art tradition, next only to that of Australia and
Africa  in  abundance,  that  is  much  older  (Pandey,  1993;  Bednarik,  2000).  Some  rock  art  has  been
assigned to the Upper Paleolithic period. There is surprising uniformity, both in style and content, in
the rock art paintings of the Mesolithic period (10,000 - 2500 BCE) (Tyagi, 1992; Wakankar, 1992).

The archaeological phases of the Indus (or Sindhu‐Sarasvati) tradition have been divided into four eras:
early  food‐producing  era  (c.  6500‐  5000  BCE),  regionalization  era  (5000  -  2600  BCE),  integration  era  (2600  -
1900 BCE),  and  localization  era  (1900  -  1300  BCE)  (Shaffer,  1992).  The  early  food‐producing  era  lacked
elaborate ceramic technology. The regionalization era was characterized by styles in ceramics, lapidary
arts, glazed faience and seal making that varied across regions. In the integration era, there is significant
homogeneity in material culture over a large geographical area and the use of the so‐called Indus script,
which  is  not  yet  deciphered.  In  the  localization  era,  patterns  of  the  integration  era  are  blended  with
regional  ceramic  styles,  indicating  decentralization  and  restructuring  of  the  interaction  networks.  The
localization  era  of  the  Sindhu‐Sarasvati  tradition  is  the  regionalization  era  of  the  Ganga‐Yamuna
tradition which transforms into the integration era of the Magadha and the Mauryan dynasties. There is
also continuity in the system of weights and lengths between the Harappan period and the later historic
period (Mainkar, 1984).
The  cultural  mosaic  in  the  third  millennium  BCE  is  characterized  by  the  integration  phase  of  the Harappan civilization of northwest India, copper and copper/bronze age cultures or central and north India, and Neolithic cultures of south and east India (Lal, 1997). Five large cities of the integration phase are  Mohenjo‐Daro,  Harappa,  Ganweriwala,  Rakhigarhi,  and  Dholavira.  Other  important  sites  of  this period are Kalibangan, Rehman Dheri, Nausharo, Kot Diji, and Lothal.
A majority of the towns and settlements of the Harappan period were in the Sarasvati valley region. Hydrological changes, extended period of drought, and the drying up of the Sarasvati River due to its major tributaries being captured by the Sindh and Ganga Rivers after an earthquake in 1900 BCE led to the abandonment of large areas of the Sarasvati valley (Kak, 1992). The Harappan phase went through various  stages  of  decline  during  the  second  millennium  BCE.  A  second  urbanization  began  in  the Ganga and Yamuna valleys around 900 BCE. The earliest surviving records of this culture are in Brahmi script.  This  second  urbanization  is  generally  seen  at  the  end  of  the  Painted  Gray  Ware  (PGW)  phase (1200‐ 800 BCE) and with the use of the Northern Black Polished Ware (NBP) pottery. Late Harappan was  partially  contemporary  with  the  PGW  phase.  In  other  words,  a  continuous  series  of  cultural developments link the two early urbanizations of India.
The setting for the hymns of the Rigveda, which is India’s most ancient literary text, is the area of Sapta
Saindhava,  the  region  of  north  India  bounded  by  the  Sindh  and  the  Ganga  rivers  although  regions


                                                                                                                                                                                            






around this heartland are also mentioned. The Rigveda describes the Sarasvati River to be the greatest of the rivers and going from the mountains to the sea. The archaeological record, suggesting that this river had turned dry by1900 BCE, indicates that the Rigveda is prior to this epoch. The Rigveda and other early Vedic  literature  have  astronomical  references  related  to  the  shifting  astronomical  frame  that  indicate epochs of the fourth and third millennium BCE which is consistent with the hydrological evidence. The nakshatra lists are found in the Vedas, either directly or listed under their presiding deities, and it one may conclude that their names have not changed. Vedic astronomy used a luni‐solar year in which an intercalary month was employed as adjustment with solar year.
The shifting of seasons through the year and the shifting of the northern axis allow us to date several
statements in the Vedic books (Sastry, 1985). Thus the 
Shatapatha Brāhmana (2.1.2.3) has a statement that
points to an earlier epoch where it is stated that the Krittikā (Pleiades) never swerve from the east. This
corresponds to 2950 BCE. The 
Maitrāyanīya Brāhmana Upanishad (6.14) refers to the winter solstice being
at the mid‐point of the Shravishthā segment and the summer solstice at the beginning of Maghā. This
indicates 1660 BCE.  The 
Vedānga  Jyotisha  mentions  that  winter  solstice  was  at  the  beginning  of
Shravishthā and the summer solstice at the mid‐point of Ashleshā. This corresponds to about 1300 BCE.
The nakshatras in the Vedānga Jyotisha are defined to be 27 equal parts of the ecliptic.  The nakshatra
list of the late Vedic period begin with Krittikā (Pleiades) whereas that of the astronomy texts after 200
CE begin with Ashvini (α and β Arietis), indicating a transition through 2 nakshatras, or a time span of
about 2,000 years.
The foundation of Vedic cosmology is the notions of bandhu (homologies or binding between the outer
and  the  inner).  In  the  Ayurveda,  medical  system  associated  with  the  Vedas,  the  360  days  of  the  year
were taken to be mapped to the 360 bones of the developing fetus, which later fuse into the 206 bones of
the  person.  It  was  estimated  correctly  that  the  sun  and  the  moon  were  approximately  108  times  their
respective diameters from the earth (perhaps from the discovery that the angular size of a pole removed
108 times its height is the same as that of the sun and the moon), and this number was used in sacred
architecture.  The distance to the sanctum sanctorum of the  temple from the gate and the perimeter  of
the  temple  were  taken  to  be  54  and  180  units,  which  are  one‐half  each  of  108  and  360  (Kak,  2005a).
Homologies at many levels are at the basis of the idea of 
recursion, or repetition in scale and time. The
astronomical  basis  of  the  Vedic  ritual  was  the  reconciliation  of  the  lunar  and  solar  years  (Kak,  2000a;
Kak, 2000b).
Texts of the Vedic and succeeding periods provide us crucial understanding of the astronomy and the archaeoastronomy of the historical period throughout India. The medieval period was characterized by pilgrimage  centers  that  created  sacred  space  mirroring  conceptions  of  the  cosmos.  Sacred  temple architecture served religious and political ends.

The  instruments  that  were  used  in  Indian  astronomy  include  the  water  clock  (ghati  yantra),  gnomon
(shanku), cross‐staff (yasti yantra), armillary sphere (gola‐yantra), board for sun’s altitude (phalaka yantra),
sundial (
kapāla yantra), and astrolabe (Gangooly, 1880). In early 18th century, Maharaja Sawai Jai Singh II
of  Jaipur  (r.  1699‐1743)  built  five  masonry  observatories  called  Jantar  Mantar  in  Delhi,  Jaipur,  Ujjain,
Mathura, and Varanasi. The Jantar Mantar  consists of  the Ram Yantra (a cylindrical structure with an
open top and a pillar in its center to measure the altitude of the sun), the Rashivalaya Yantra (a group of
twelve  instruments  to  determine  celestial  latitude  and  longitude),  the  Jai  Prakash (a  concave
hemisphere), the Laghu Samrat Yantra (small sundial), the Samrat Yantra (a huge equinoctial dial), the
Chakra  Yantra  (upright  metal  circles  to  find  the  right  ascension  and  declination  of  a  planet),  the
Digamsha  Yantra  (a  pillar  surrounded  by  two  circular  walls),  the  Kapali  Yantra (two  sunken
hemispheres  to  determine  the  position  of  the  sun  relative  to  the  planets  and  the  zodiac),  and  the Narivalaya Yantra (a cylindrical dial).



                                                                                                                                                                                            







2.  Pre‐historical and Harappan Period

The city of Mohenjo‐Daro (2500 BCE), like most other Harappan cities (with the exception of Dholavira
as  far  as  we  know  at  this  time)  was  divided  into  two  parts:  the  acropolis  and  the  lower  city.  The
Mohenjo‐Daro  acropolis,  a  cultural  and  administrative  centre,  had  as  its  foundation  a  12  meter  high
platform of 400 m 
¯ 200 m. The lower city had streets oriented according to the cardinal directions and
provided  with  a  network  of  covered  drains.  Its  houses  had  bathrooms.  The  city’s  wells  were  so  well
constructed with tapering bricks that they have not collapsed in 5000 years. The Great Bath (12 m 
¯ 7
m) was built using finely fitted bricks laid on with gypsum plaster and made watertight with bitumen.
A high corbelled outlet allowed it to be emptied easily. Massive walls protected the city against flood
water.

The absence of monumental buildings such as palaces and temples makes the Harappan city strikingly different from its counterparts of Mesopotamia and Egypt, suggesting that the polity of the Harappan state was de‐centralized and based on a balance between the political, the mercantile, and the religious elites. The presence of civic amenities such as wells and drains attests to considerable social equality. The  power  of  the  mercantile  guilds  is  clear  in  the  standardization  of  weights  of  carefully  cut  and polished chart cubes that form a combined binary and decimal system.

Mohenjo‐Daro and other sites show slight divergence of 1° to 2° clockwise of the axes from the cardinal
directions (Wanzke, 1984). It is thought that this might have been due to the orientation of Aldebaran
(
Rohinī in Sanskrit) and the Pleiades (Krtikkā in Sanskrit) that rose in the east during 3000 BCE to 2000
BCE at the spring equinox; the word “rohinī” literally means rising. Furthermore, the slight difference
in  the  orientations  amongst  the  buildings  in  Mohenjo‐Daro  indicates  different  construction  periods
using the same traditional sighting points that had shifted in this interval (Kenoyer, 1998).

Mohenjo‐Daro’s  astronomy  used  both  the  motions  of  the  moon  and  the  sun  (Maula,  1984).  This  is attested by the use of great calendar stones, in the shape of ring, which served to mark the beginning and end of the solar year.


Dholavira
Dholavira  is  located  on  an  island  just  north  of  the  large  island  of  Kutch  in  Gujarat.  Its  strategic
importance  lay  in  its  control  of  shipping  between  Gujarat  and  the  delta  of  the  Sindh  and  Sarasvati
rivers.
The layout of Dholavira is unique in that it comprises of three “towns,” which is in accord with Vedic
ideas (Bisht, 1997; Bisht, 1999a; Bisht, 1999b). The feature of recursion in the three towns, or repeating
ratios at different scales, is significant. Specifically, the design is characterized by the nesting proportion
of 9:4 across the lower and the middle towns and the castle. The proportions of 5/4, 7/6, and 5/4 for the
lower  town,  the  middle  town,  and  the  castle  may  reflect  the  measures  related  to  the  royal  city,  the
commander’s quarter, and the king’s quarter, respectively, which was also true of Classical India (Bhat,
1995).
A  Dholavira  length,  D,  has  been  determined  by  finding  the  largest  measure  which  leads  to  integer
dimensions for the various parts of the city. This measure turns out be the same as the Arthaśāstra (300
BCE) measure of 
dhanus (arrow) that equals 108 angulas (fingers). This scale is confirmed by a terracotta
scale  from  Kalibangan  and  the  ivory  scale  found  in  Lothal.  The  Kalibangan  scale  (Joshi, 2007;
Balasubramaniam and Joshi, 2008) corresponds to  units  of 17.5 cm, which is substantially the same  as the Lothal scale and the small discrepancy may be a consequence of shrinkage upon firing.



                                                                                                                                                                                            





The  analysis  of  the  unit  of  length  at  Dholavira  is  in  accord  with  the  unit  from  the  historical  period
(Danino, 2005; Danino, 2008). The unit that best fits the Dholavira dimensions is 190.4 cm, which when
divided by 108 gives the Dholavira 
angula of 1.763 cm. The subunit of angula is confirmed when one
considers that the bricks in Harappa follow ratios of 1:2:4 with the dominating size being 7 ¯ 14 ¯ 28
cm (Kenoyer, 1998). These dimensions can be elegantly expressed as 4 
¯ 8 ¯ 16 angulas, with the unit of
angula taken as 1.763 cm. It is significant that the ivory scale at Lothal has 27 graduations in 46 mm, or
each graduation is 1.76 mm.















Figure 1. Map of Dholavira (Bisht, 1997)
With the new Dhloavira unit of D, the dimensions of Mohenjo‐Daro’s acropolis turn out to be 210 ¯ 105 D; Kalibangan’s acropolis turn out to be 126 ¯ 63 D. The dimensions of the lower town of Dholavira are 405 ¯ 324 D; the width of the middle town is 180 D; and the inner dimensions of the castle are 60 ¯ 48 D. The sum of the width and length of the lower town comes to 729 which is astronomically significant since it is 27 ¯ 27, and the width 324 equals the nakshatra year 27 ¯ 12.
Continuity has been found between the grid and modular measures in the town planning of Harappa and  historical  India,  including  that  of  Kathmandu  Valley  (Pant  and  Funo,  2005).  The  measure  of  19.2 meters  is  the unit in quarter‐blocks  of Kathmandu; this is nearly the same as the  unit characteristic of the dimensions of Dholavira. It shows that the traditional architects and town planners have continued the use of the same units over this long time span.






















Figure 2. Astronomical seal from Rehman Dheri


                                                                                                                                                                                            







Rehman Dheri
A 3rd millennium seal from Rehman Dheri, showing a pair of scorpions on one side and two antelopes
on the other, that suggests knowledge of Vedic themes. It has been suggested that this seal represents
the  opposition  of  the  Orion  (Mrigashiras,  or  antelope  head)  and  the  Scorpio  (Rohini  of  the  southern
hemisphere which is 14 nakshatras from the Rohini of the northern hemisphere) nakshatras. The arrow
near the head of one of the antelopes could represent the decapitation of Orion. It is generally accepted
that  the  myth  of  Prajapati  being  killed  by  Rudra  represents  the  shifting  of  the  beginning  of  the  year
away from Orion and it places the astronomical event in the fourth millennium BCE (Kak, 2000a).

3.  Neolithic and Megalithic Sites
Interesting sites of archaeoastronomical interest include the Neolithic site of Burzahom from Kashmir in
North India, and megalithic sites from Brahmagiri and Hanamsagar from Karnataka in South India.

Burzahom, Kashmir
This  Neolithic  site  is  located  about  10  km  northeast  of  Srinagar  in  the  Kashmir  Valley  on  a  terrace  of
Late  Pleistocene‐Holocene  deposits.  Dated  to  around  3000  ‐  1500  BCE,  its  deep  pit  dwellings  are
associated with ground stone axes, bone tools, and gray burnished pottery. A stone slab of 48 cm ¯ 27
cm, obtained from a phase dated to 2125 BCE shows two bright objects in the sky with a hunting scene
in the foreground. These have been assumed to be a depiction of a double star system (Kameshwar Rao,
2005).















Figure 3. Burzahom sky scene

Brahmagiri, Karnataka
The  megalithic  stone  circles  of  Brahmagiri  (latitude  14o  73,  longitude  76 77),  Chitradurga  district  of
Karnataka  in  South  India,  that  have  been  dated  to 900  BCE,  show  astronomical  orientations.
Kameswara  Rao  (1993)  has  argued  that  site  lines  from  the  centre  of  a  circle  to  an  outer  tangent  of another circle point to the directions of the sunrise and full moon rise at the time of the solar and lunar solstices and equinox.










                                                                                                                                                                                            
























Figure 4. Megalithic stone circles of Brahmagiri

Hanamsagar, Karnataka.
Hanamsagar is a megalithic site with stone alignments pointing to cardinal directions. It is located on a
flat area between hills about 6 km north of the Krishna river at latitude 16
o 19 18 and longitude 7627
10.    The  stones,  which  are  smooth  granite,  are  arranged  in  a  square  of    side  that  is  about  600  meters
with 50 rows and 50 column (for a total of 2,500 stones), with a separation between stones of about 12
m.  The  stones  are  between  1  to  2.5  m  in  height  with  a  maximum  diameter  of  2  to  3  m.  The  lines  are
oriented in cardinal directions. There is a squarish central structure known as 
chakri katti.
It has been argued that the directions of summer and winter solstice can be fixed in relation to the outer and  the  inner  squares.  Kameswara  Rao  (2005)  suggests  that  it  could  have  been  used  for  several  other kind of astronomical observations such as use of shadows to tell the time of the day, the prediction of months, seasons and passage of the year.























Figure 5. Alignments at Hanamsagar




                                                                                                                                                                                            





4.  The Plan of the Temple

The  sacred  ground  for  Vedic  ritual  is  the  precursor  to  the  temple.  The  Vedic  observances  were connected with the circuits of the sun and the moon (Kak, 1993; Kak, 1995; Kak, 1996). The altar ritual was associated with the east‐west axis and we can trace its origins to priests who maintained different day  counts  with  respect  to  the  solstices  and  the  equinoxes.    Specific  days  were  marked  with  ritual observances that were done at different times of the day.














Figure 6. The three altars of the Vedic house: circular
(earth, body), half‐moon (atmosphere, prāna), square (sky, consciousness)

In  the  ritual  at  home,  the  householder  employed  three  altars  that  are  circular  (earth),  half‐moon
(atmosphere),  and  square  (sky),  which  are  like  the  head,  the  heart,  and  the  body  of  the  Cosmic  Man
(Purusha).  In  the  Agnichayana,  the  great  ritual  of  the  Vedic  times  that  forms  a  major  portion  of  the
narrative of the Yajurveda, the atmosphere and the sky altars are built afresh in a great ceremony to the
east. This ritual is based upon the Vedic division of the universe into three parts of earth, atmosphere,
and sky that are assigned numbers 21, 78, and 261, respectively. The numerical mapping is maintained
by  placement  of  21  pebbles  around  the  earth  altar,  sets  of  13  pebbles  around  each  of  6  intermediate
(13
¯6=78) altars, and 261 pebbles around the great new sky altar called the Uttara‐vedi, which is built
in the shape of a falcon; these numbers add up to 360, which is symbolic representation of the year. The
proportions related to these three numbers, and others related to the motions of the planets, and angles
related to the sightings of specific stars are reflected in the plans of the temples of the historical period
(Kak, 2002b; Kak, 2006a; Kak, 2009; Kaulācara, 1966).













Figure 7. The falcon altar of the Agnichayana altar
The Agnichayana altar is the prototype of the temple and of the tradition of architecture (Vāstu).  The altar is first built of 1,000 bricks in five layers (that symbolically represent the five divisions of the year, the  five  physical  elements,  as  well  as  five  senses)  to  specific  designs.  The  altar  is  constructed  in  a sequence  of  95  years,  whose  details  are  matched  to  the  reconciliation  of  the  lunar  and  solar  years  by means of intercalary months.


                                                                                                                                                                                            







In the ritual ground related to the Agnichayana ceremony, the Uttara‐vedi is 54 units from the entrance in  the  west  and  the  perimeter  of  the  ritual  ground  is  180  units  (Kak,  2005a).  These  proportions characterize many later temples.

The Temple Complex at Khajuraho
The  town  of  Khajuraho  extends  between  79°  54’  30”  to  79°  56’  30”  East  and  24°  50’  20”  to  24°  51’  40”
North,  in  Chhatarpur  district,  in  Madhya  Pradesh.  The  temples  of  Khajuraho  were  built  in  9th  ‐12th
century CE by the Chandela kings. Originally there were 84 temples, of which 23 have survived. Of the
surviving temples, 6 are associated with Shiva, 8 with Vishnu, and 5 with the goddess (Singh, 2009b).


Apabh       Asvini
Krttika               1            27         Revati
Rohini           2                                                26       U. Prosth.
3                                                                                 25
Mrga                             Vaisakha                      Caitra                                Prosthap.
4                                                                                                               24

Ardra           Jyaistha                                 I                      XII                         Phalguna
5                                                                                                                                 Satabhisaj23

II                                                               XI
Punarvasu                                                                                                                                            Sravishtha
6                                                                                                                                                          22
Asadha                                                                                                                       Magha
Pusya                               III                                                                                          X                             Srona
7                                                                                                                                                              21



Asresa
8       Sravana

Magha
      9


P. Phal
      10




IV




V


Bhadrapada
                                         VI




IX                             U. Asadh
20
Pausa
P. Asadh
    19

VIII
                              Mula
18
VII                      Margasirsa

U. Phal
        11
Hasta
     12




Asvayuja

Citra
    13





Svati
    14



Rohini
       17
Kartika
                           Anuradha
16
Visakha
       15

Figure 8. Mapping of the nakshatras to the solar months


At the eastern edge of the temple complex are the Dantla hills, with a peak of 390 m at which is located a  shrine  to  Shiva,  which  is  a  reference  point  for  the  temple  entrances.  All  the  temples  excepting  the Chaturbhuja face the east. The southeastern edge has the Lavanya hill that is separated from the Dantla hills by the eastward flowing river Khudar. At the foothills of the Lavanya hill at a height of 244m is the shrine of goddess Durga as Mahishasurmardini.

The shrines to Shiva and Durga on the Dantla and Lavanya hills span the polarities of spirit (Purusha)
and  matter  (Prakriti),  which  are  bridged  by  the  river  between  the  hills.  The  temples  of  Khajuraho  are
popular  pilgrimage  centers  during  two  spring  festivals:  Shivaratri  that  falls  on  the  new  moon  of
Phalguna (February/March), and Holi, which falls on the full moon of Chaitra (March/April).
The Lakshmana temple, one of the oldest of the complex, is considered the axis mundi of the site. It was built by  the king Yashovarman  (925‐950) as symbol of the Chandela victory over the Pratiharas and a record of supremacy of their power. This temple is oriented to the sunrise on Holi.




                                                                                                                                                                                            





The groups of temples form three overlapping mandalas, with centers at the Lakshmana (Vishnu), the Javeri (Shiva), and the Duladeva (Shiva) temples. Their deviation from true cardinality is believed to be due to the direction of sunrise on the day of consecration (Singh, 2009).

The temple, as a representation of the cosmos and its order, balances the asuras (demons) and the devas (gods),  as  well  as  inheres  in  itself  other  polarities  of  existence.  In  the  Lakshmana  Temple,  Vishnu  is depicted in a composite form with the usual calm face bracketed by the faces of lion and boar. The conception of the sanctum is as a mandala (Desai, 2004).

The planetary deities, the grahas, encircle the temple in the following arrangement:

Surya (Sun)
Soma (Moon)                            Mangala (Mars)
Brhaspati (Jupiter)                             Budha (Mercury)
Shani (Saturn)                          Shukra (Venus)
Ganesha                                       Durga
Ganesha  and  Durga  are  the  deities  of  the  ascending  and  the  descending  nodes  of  the  moon,
respectively. The temple is envisioned like Mount Meru, the axis of the universe, and the planets move
around it.

5.  The Udayagiri Observatory

Udayagiri (“hill of [sun]‐rise’’] is one of the principal ancient astronomical observatories of India. It is
located  at  23
o31’  N  latitude  on  the  Tropic  of  Cancer  in  Madhya  Pradesh,  about  50  kilometers  from
Bhopal, near Vidisha, Besnagar and Sanchi. An ancient site that goes back to at least the second century
BCE,  it  was  substantially  enlarged  during  the  reign  of  the  Gupta  Emperor  Chandragupta  II
Vikramaditya  (r.  375‐414).  This  site  is  associated  with  20  cave  temples  that  have  been  cut  into  rock;
nineteen of these temples are from the period of Chandragupta’s reign (Dass and Willis, 2002).














Figure 9. Udayagiri layout (Balasubramaniam , 2008)

It  appears  that  the  ancient  name  of  Udayagiri  was  Vishnupadagiri,  or  the  “hill  of  the  footprint  of
Vishnu,” and the name Udayagiri is after the Paramara ruler Udayaditya (c. 1070‐93). The hill is shaped
like a foot. A saddle connects the northern and southern hills, and a passageway is located at the place
where the northern hill meets the saddle. The Gupta period additions and embellishments at Udayagiri
were concentrated around this passage. Most of the cave temples are located around the passageway.

On the summer solstice day, there was an alignment of the sun’s movement with the passageway. The
day  mentioned  in  the  dated  Chandragupta  II  Vikramaditya  period  inscription  in  cave  6  has  been
calculated to be very close to the summer solstice of the year 402 CE. On this day, the shadow of the


                                                                                                                                                                                          





Iron Pillar of Delhi, which was originally located at the entrance of the passageway, fell in the direction of the reclining Vishnu panel (Balasubramaniam, 2008).
On  the  northern  hilltop,  there  exists  a  flat  platform  commanding  a  majestic  view  of  the  sky.  Several astronomical marks have been identified at this platform, indicating that this was the site of the ancient astronomical observatory.

6.  Medieval Pilgrimage Complexes

Medieval pilgrimage centers fulfilled many functions including that of trade and business. They were important  to  the  jyotishi  (astrologer)  who  would  make  and  read  the  pilgrims’  horoscope.    The  better astrologers  were  also  interested  in  astronomy  and  this  knowledge  was  essential  for  the  alignment  of temples and palaces.

Every  region  of  India  has  important  pilgrimage  centers,  some  of  which  are  regional  and  others  pan‐
Indic. The  most  famous  of  the  pan‐Indic  centers  are  associated  with  Shiva  (Varanasi),  Krishna
(Mathura,  Dwarka),  Rama  (Ayodhya),  Vishnu  (Tirupati),  and  the  12‐yearly  rotation  of  the  Kumbha
Mela  at  Prayag,  Haridwar,  Ujjain,  and  Nashik.  For  pilgrimage  centers  such  as  Chitrakut,  Gaya,
Madurai,  Varanasi,  Vindhyachal,  and  Khajuraho,  the  question  of  alignments  of  temples  to  cardinal
directions or to direction of the sun on major festivals has been studied by scholars (Singh, 2009b). Here
we will consider the sun temples of Varanasi (Malville, 1985; Singh, 2009a and 2009b).





























Figure 10. Khajuraho: Landscape Geometry and Topography (Singh, 2009b).


The Sun Temples of Varanasi
Varanasi is an ancient city dating from the beginning of the first millennium BCE, whose Vedic name is
Kashi  (Sanskrit  for  “radiance”),  a  name  that  continues  to  be  used  together  with  Banaras.  Of  its  many
temples,  the  most  important  is  Kashi  Vishvanath  Temple,  or  “Golden  Temple,”  dedicated  to  Lord


                                                                                                                                                                                          





Shiva,  the  presiding  deity  of  the  city.  Because  of  repeated  destruction  by  the  sultans  and  later  by Aurangzeb,  the  current  Vishvanath  is  a  relatively  modern  building.  It  was  built  in  1777  by  Maharani Ahilyabai of Indore, and its shikhara (spire) and ceilings were plated with of gold in 1839, which was a gift from Maharaja Ranjit Singh (Singh, 2009a and 2009b).






















































Figure 11. Sun Shrines: Cosmic Order and Cyclic orientation of Time (Singh, 2009a).



                                                                                                                                                                                          







Shiva  represents  both  the  axis  of  the  universe  as  well  as  that  of  one’s  inner  being.  One  of  the  great
festivals celebrated in Varanasi is Shivaratri which is celebrated on the 13th day of the dark fortnight of
the Phalguna month (February‐March). On that day you can see the sun rise in the east with the  new
moon just above it, which is represented iconographically by Shiva (as the sun) wearing the moon on
his head.
There  are  several  pilgrimage  circuits  in  Varanasi  for  circumambulating  the  city.  The  Panchakroshi
circuit has 108 shrines on it, and the four inner circuits have a total of 324 shrines. It is also known for
the  circuit  of  the  Aditya  shrines.  The  Adityas  are  the  7  or  8  celestial  gods,  although  their  number  is
counted  to  12  in  later  books.  In  Puranic  India,  they  are  taken  to  be  the  deities  of  the  twelve  solar
months.    The  Aditya  temples  were  also  razed  during  the  centuries  of  Muslim  rule,  but  have  been  re‐
established at the same sites and are now part of the active ritualscapes (Singh, 2009a).
Several  Aditya  shrines  have  been  located  with  the  aid  of  descriptions  in  the  Kashi  Khanda  and
pilgrimage guides (Singh and Malville, 1995; Singh, 2009a and 2009b). Six of these lie along one sides of
an  isosceles  triangle  with  a  base  of 2.5km.  The  triangle  surrounds  the  former  temple  of
Madhyameshavara,  which  was  the  original  center  of  Kashi.  Pilgrims  walking  along  the  triangle  are symbolically circumambulating the cosmos.
7.  Sacred Cities

There  are  numerous  sacred  cities  in  the  Indian  sub‐continent  that  were  either  built  to  an  archetypal master plan or grew organically by virtue of being connected to a specific celestial deity.  Some of the important sacred cities are:

1.     Varanasi
2.     Vijayanagara
3.     Ayodhya
4.     Mathura
5.     Bhaktapur
6.     Tirupati
7.     Kanchipuram
8.     Dwarka
9.     Ujjain

Robert  Levy  viewed  the  Indian  sacred  city  as  a  structured      “mesocosm”,  situated  between  the
microcosm  of  the  individual  and  the  macrocosm  of  the  culturally  conceived  larger  universe  (Levy, 1991). Such  a  city  is  constructed  of  spatial  connected  mandalas,  each  of  which  is  sustained  by  its  own culture  and  performance.  The  movements  of  the  festival  year  and  rites  of  passage  constitute  a  “civic dance”, which defines the experience of its citizens.

The  life‐cycle  passages  and  festivals  dedicated  to  the  gods  affirm  the  householders’  moral  compass, identities and relationships. But there also exist other deities, represented generally by goddesses, who point  to  the  forces  of  nature  outside  of  moral  order.  These  are  brought  into  the  larger  order  through tantric  invocations  and  amoral  propitiatory  offerings.  Performances  invoking  the  goddess  are  the responsibility of the king and the merchants.

Sacrality and Royal Power at Vijayanagara
The city of Vijayanagara (also known as Hampi) was founded in the 14th century and sacked in 1565.
The best known kings associated with Vijayanagara are Harihara I and II and Bukka Raya I (ca. 1336‐
1404), and  Krishnadevaraya  and  his  half‐brother  Achyutadevaraya  (1509‐42).    From  the  mid‐14th
century  to  1565,  the  city  was  the  capital  of  the  Vijayanagara  Empire.  According  to  the  Persian

                                                                                                                                                                                          





ambassador  Abdur  Razaaq  (1442  CE):  “The  City  of  Vijayanagara  is  such  that  the  pupil  of  the  eye  has never  seen  such  a  place  like  it,  and  the  ear  of  intelligence  has  never  been  informed  that  there  existed anything to equal it in the world.”


















































Figure 12. Vijayanagara City

Hampi  had  for  centuries  been  an  important  pilgrimage  city  due  to  its  mythic  association  with  river
Goddess  Pampā  and  her  consort  Virupaksha,  or  Pampāpati.  An  inscription  dated  1163  CE  records  a
mahādāna,  a  religious  offering  in  the  presence  of  Lord  Virupaksha  of  Hampi  by  the  Kalachuri  King
Bijjala. The region was part of the kingdom of Kampiladeva until 1326 when the armies of Mohammed
Bin  Tughlaq  defeated  the  king  and  imprisoned  the  two  sons  of  Sangama,  Hukka  and  Bukka.  Some

                                                                                                                                                                                          






years later the Sultan sent the two as governors of the province. In 1336 they broke free from Tughlaq allegiance and established the Sangama dynasty with its capital at Vijayanagara.

The  destruction  of  Vijayanagara  in  1565  was  captured  vividly  in  the  account  of  Robert  Sewell  (1900):
“They slaughtered the people without mercy; broke down the temples and palaces; and wreaked such
savage vengeance on the abode of the kings that, with the exception of a few great stone built temples
and walls, nothing now remains but a heap of ruins to mark the spot where once the stately buildings
stood…  They  lit  huge  fires  in  the  magnificently  decorated  buildings  forming  the  temple  of
Vitthalaswami  near  the  river,  and  smashed  its  exquisite  stone  sculptures.  With  fire  and  sword,
crowbars and axes they carried on day after day their work of destruction. Never perhaps in the history
of the world has such havoc been wrought so suddenly on so splendid a city; teeming with a wealthy
and industrious population in the full plenitude of prosperity one day and on the next seized, pillaged
and reduced to ruins amid scenes of savage massacre and horrors beggaring description.”

Hampi has a strong association with the Ramayana and the names of many sites in the area bear names
mentioned in the epic. These include Rishimukha, Malyavanta hill and Matanga hill along with a cave
where  Sugriva  is  said  to  have  kept  the  jewels  of  Sita.  The  site  of  Anegundi  is  associated  with  the
kingdom  of  Angad,  son  of  Vali.  The  Anjaneya  Parvata,  a  hill  to  the  west  of  Anegundi,  is  the  fabled
birthplace of Hanuman.

Hampi is also linked with the river goddess Pampā and the legend of her marriage to Lord Virupaksha or Shiva. Each year, in the month of Chaitra (March‐April), this marriage is re‐enacted, with the priests of  Virupaksha  temple  devoutly  performing  every  ritual  from  Phalapūjā  (betrothal)  to  Kalyānotsava (marriage) in the temple.

The  Sacred  Center  of  the  city  lies  south  of  the  Tungabhadra  River,  and  it  is  dominated  by  four  large complexes  of  the  Virupaksha,  Krishna,  Tiruvengalanatha  (Achyutaraya)  and  Vitthala  temples.  The major  temples  are  either  close  to  cardinality,  departing  by  an  average  of  10’,  or  are  oriented  to  major features of the sacred landscape.

Further  south  of  the  Sacred  Center  is  the  Royal  Center,  which  is  divided  into  the  public  and  private realms. The division is achieved by a north‐south axis, which passes almost precisely between the kingʹs 100‐column audience hall in the east and the queenʹs large palace in the west. The Ramachandra temple pierces the axis by connecting the private and the public domains. In the homology of the king and the deity, the king is able to inhere in him the royalty and divinity of Rama.

The Virabhadra temple is on the summit of Matanga hill, which is the center of the vāstu‐mandala and
the symbolic source of protection that extended outward from it along radial lines.  As viewed from a
point midway between the audience hall and the queen’s palace, the 
shikhara of the Virabhadra lies only
4 minutes  of  arc  (4’)  from  true  north.  The  ceremonial  gateway  in  the  corridor  west  of  Ramachandra temple  joined  with  the  summit  of  Matanga  hill  departs  from  true  north  by  0.6  minutes  of  arc  (0.6’) (Malville, 2000).

The  orientations  of  the  major  axes  of  the  small  temples,  shrines,  and  palaces  of  the  urban  core  are  in
marked  contrast  to  those.  The  smaller  structures  are  rotated  away  from  cardinality  for  the  four
directions by 17o, suggesting that they were influenced by the position of the rising sun on the morning when it crosses the zenith.
The bazaar streets of the Virupaksha, Vitthala and Krishna temples are set between 13 and 15 degrees south of east. Malville (2000) speculates that there may be some link between these orientations and the rising point of the star Sirius.



                                                                                                                                                                                          








8.  Conclusions
Interest in archaeoastronomy and art, as connected to temples and ancient monuments, has increased in
India as the country’s prosperity has increased. This increase is also owing to the major archaeological
discoveries that have been made in the past few decades and the importance of temple tourism.
The principal authority over significant sites is the Indian Archaeological Survey of India (ASI) and its
sister institutions that function at the state level as Departments of Archaeology and Museums. In 1976,
the Indian Government initiated projects to excavate three great medieval cities: Fatehpur Sikri in Uttar
Pradesh,  Champaner  in  Gujarat,  and  Vijayanagara  in  Karnataka,  which  are  UNESCO  World  Heritage
sites.  The  wealth  of  discoveries  made  in  these  cities  is  strengthening  the  movement  to  expose  and
preserve  other  sites  in  the  country.  The  efforts  at  excavation,  conservation,  and  research  can  only  be
expected to increase. In particular, greater attention will be given to the archaeoastronomical aspects of
the monuments.
Acknowledgements. I am thankful to R. Balasubramaniam, Michel Danino, McKim Malville, and Rana Singh for their advice. The essay is dedicated to the memory of R. Balasubramaniam who passed away in December 2009.

Select Bibliography

Balasubramaniam, R.
2008    On the mathematical significance of the dimensions of the Delhi Iron Pillar.   Current Science 95:
766‐770.

Balasubramaniam, R. and Joshi, J.P.
2008   Analysis of Terracotta Scale of Harappan Civilization from Kalibangan. Current  Science 95: 588‐
                 
589.

Bednarik, R. G.
2000          Early Indian petroglyphs and their global context. Purakala 11: 37-47.

Bhat, M.R.
1995          Varāhamihira’s Brihat Samhitā. Delhi: Motilal Banarsidass.

Bisht, R. S.
1997          Dholavira Excavations: 1990‐94. In Facets of Indian Civilization Essays in        Honour of Prof. B.
B. Lal, ed. J. P. Joshi. New Delhi: Aryan Books International, vol. I: 107‐120.

1999a         Urban planning at Dholavira, a Harappan City; in, Malville, John McKim and  Gujral, Lalit
M. (eds.) Ancient Cities, Sacred Skies. Cosmic Geometries and City Planning in Ancient India. New
Delhi: Aryan Books International for Indira Gandhi National Centre for the Arts, 11‐23.

1999b     Harappans and the Rigveda: Points of convergence. In The Dawn of Indian Civilization, edited by
G.C. Pande. Centre for Studies in Civilizations, Delhi, 393‐442.

Danino, M.
2005.         Dholaviraʹs geometry: A preliminary study, Puratattva  35: 76‐84.




                                                                                                                                                                                          







2008.         New insights into Harappan town‐planning, proportions and units, with special reference to
Dholavira, Man and Environment 33: 66‐79.

Dass, M. I. and Willis, M.
2002.       The lion capital from Udayagiri and the antiquity of sun worship in Central India. South Asian
Studies 18: 25‐45.

Desai, D.
2004.       Manifestation of order in art: the iconic scheme at Khajuraho. In Rita: The Cosmic Order, Madhu
Khanna (ed). New Delhi: D.K. Printworld.

Gangooly, P. (ed.)
1880.       Surya Siddhanta, Translated with Notes and Appendix by Rev. Ebenezer Burgess, Motilal
Banarsidass, New Delhi, 1960.

Joshi, J.P.
2007         Excavations at Kalibangan, The Harappans, Volume II, Part I, New Delhi: Archaeological Survey
of India Report, 2007.

Kak, S.
1992        The Indus tradition and the Indo‐Aryans. Mankind Quarterly 32:195‐213.

1993        Astronomy of the Vedic Altars. Vistas in Astronomy 36:117‐140.

1995        The astronomy of the age of geometric altars. Quarterly Journal of the Royal Astronomical Society
36:385‐396.

1996         Knowledge of planets in the third millennium BC. Quarterly Journal of the Royal Astronomical
Society 37:709‐715.

2000a      The Astronomical Code of the Rigveda. New Delhi: Munshiram Manoharlal.

2000b       Birth and early development of Indian astronomy. In Astronomy Across Cultures: The History of
Non‐Western Astronomy, Helaine Selin (ed). Kluwer, 303‐340.

2002a      The Aśvamedha: The Rite and Its Logic. Delhi: Motilal Banarsidass.

2002b       Space and cosmology in the Hindu temple. Presented at Vaastu Kaushal: International
Symposium on Science and Technology in Ancient Indian Monuments, New Delhi, November
16‐17.

2005a      The axis and the perimeter of the temple. Presented at the Kannada Vrinda Seminar Sangama
2005 held at Loyola Marymount University, Los Angeles.

2005b      Early Indian architecture and art.  Migration and Diffusion - An International Journal 6: 6‐27.

2006a       Art and cosmology in India. Patanjali Lecture, University of Massachusetts, Dartmouth, May 5.

2006b       Cosmology and sacred architecture in India. In Sangama: A Confluence of Art and Culture
During the Vijayanagara Period, Nalini Rao (ed.). Delhi: Originals.

2009        Time, space and structure in ancient India. Presented at the Conference on Sindhu‐Sarasvati
Civilization: A reappraisal, Loyola Marymount University, Los Angeles, February 21 & 22, 2009.


                                                                                                                                                                                          








Kameswara Rao, N.
1993         Astronomical orientations of the megalithic stone circles of Brahmagiri. Bulletin, Astr. Soc.
India. 21: 67‐77.

Kameswara Rao, N.
2005        Aspects of prehistoric astronomy in India. Bulletin, Astr. Soc. India 33: 499‐511.

Kaulacāra, R.
1966        Śilpa Prakāśa. Boner, A. and Rath Sarma, S. (eds.). Leiden: E.J. Brill.

Kenoyer, J. M.
1998         Ancient Cities of the Indus Valley Civilization. Oxford University Press.

Lal, B.B.
1997        The Earliest Civilization of South Asia. New Delhi: Aryan Books International.

2002.       The Saraswati Flows on: the Continuity of Indian Culture. New Delhi: Aryan Books International.

Levy, R.
1991        Mesocosm: Hinduism and the Organization of a Traditional Newar City in Nepal. Berkeley:
University of California Press.

Mainkar, V.B.
1984        Metrology in the Indus Civilization. In Frontiers of the Indus Civilization. B.B. Lal and S.P. Gupta
(eds.). New Delhi: Books and Books.

Malville, J. M.
1985        Sun Worship in Contemporary India.  Man in India: A Quarterly Journal of Anthropology 65: 207‐
233.

2000         The Cosmic Geometries of Vijayanagara. In, Ancient Cities, Sacred Skies: Cosmic Geometries and
City Planning in Ancient India, edited by J.M. Malville and L.M. Gujral. Indira Gandhi National Centre for the Arts and Aryan Books International, New Delhi, 100‐118.

Maula, E.
1984        The calendar  stones from Moenjo‐Daro. In Interim Reports on Fieldwork Carried out at Mohenjo‐
Daro 1982‐83, vol. 1, eds. M. Jansen and G. Urban. Aachen and Roma, 159‐170.

Pandey, S.
1993        Indian Rock Art. New Delhi, Aryan Books International.

Pant, M. and Funo, S.
2005        The grid and modular measures in the town planning of Mohenjodaro and Kathmandu
Valley, Journal of Asian Architecture and Building Engineering 4: 51‐59.

Sewell, Robert
1900        A Forgotten Empire: Vijayanagara. Kessinger Publishing, 2004 (Reprint).

Sastry, T.S. Kuppanaa,
1985        Vedanga Jyotisa of Lagadha. New Delhi: Indian National Science Academy.



                                                                                                                                                                                          







Shaffer, J.G.
1992         The Indus valley, Baluchistan, and Helmand traditions: Neolithic through Bronze Age. In R.
Ehrlich (ed.), Chronology in Old World Archaeology. Chicago: The University of Chicago Press.

Singh, Rana P.B.
2009a    Banaras, Making of India’s Heritage City.   Planet Earth & Cultural Understanding Series, No. 3.
               
Newcastle upon Tyne: Cambridge Scholars Publishing.
2009b    Cosmic Order and Cultural Astronomy: Sacred Cities of India.   Planet Earth & Cultural
Understanding Series, No. 4. Newcastle upon Tyne: Cambridge Scholars Publishing.

Singh, Rana P.B. and J. M. Malville
1995        Cosmic Order and Cityscape of Varanasi (Kashi): Sun Images and Cultural Astronomy.
National Geographical Journal of India, 41: 69‐88.

Tyagi, G.S.
1992        Decorative intricate patterns in Indian rock art. In M. Lorblanchet (ed.), Rock Art in the Old
World. New Delhi: Indira Gandhi National Centre for the Arts.

Wakankar, V.S.
1992.       Rock painting in India. In M. Lorblanchet (ed.), Rock Art in the Old World. New Delhi: Indira
Gandhi National Centre for the Arts.

Wanzke, H.
1984        Axis systems and orientation at Mohenjo‐Daro. In Interim Reports on Fieldwork Carried out at
Mohenjo‐Daro 1982‐83, vol. 2, eds. M. Jansen and G. Urban. Aachen and Roma, 33‐44.

Willis, M.
2001        Inscriptions at Udayagiri: Locating domains of devotion, patronage and power in the eleventh
century. South Asian Studies 17: 48.




© Subhash Kak, December 2009