We will be having the last Venus transit of our lifetime this year and it will take 4 generations ( each generation is 30 years) to see it happen again! So, in order to bring the viewing to all at lowest cost, I experimented with some common available reflective objects like plain mirrors, plain mirror projected light through 90 mm magnifying glass, convex mirror, concave mirror, projection via convex and concave lenses! I also did experimenting with flat front coated mirror and a VLFL of 4 inch dia and 10 metre focus!
A Small note on the Transit of Venus!
The next transit of Venus will occur on June 5–June 6 in 2012, succeeding the previous transit on June 8, 2004. After 2012, the next transits of Venus will be in December 2117 and December 2125. Last one occurred on 2004. In 1874 it was calculated and observed purely by mathematics and using simple techniques as I have elaborated here by Pathani Samanta Chandrasekhar also known as The Naked Eye Astronomer /Astrologer who's details can be found here!
A transit of Venus across the Sun takes place when the planet Venus passes directly between the Sun and Earth, becoming visible against (and hence obscuring a small portion of) the solar disk. During a transit, Venus can be seen from Earth as a small black disk moving across the face of the Sun. The duration of such transits is usually measured in hours (the transit of 2004 lasted six hours). A transit is similar to a solar eclipse by the Moon.
While the diameter of Venus is almost four times that of the Moon, Venus appears smaller, and travels more slowly across the face of the Sun, because it is much farther away from Earth. Observations of transits of Venus helped scientists use the principle of parallax to calculate the distance between the Sun and the Earth.
Transits of Venus are among the rarest of predictable astronomical phenomena. They occur in a pattern that repeats every 243 years, with pairs of transits eight years apart separated by long gaps of 121.5 years and 105.5 years. The periodicity is a reflection of the fact that the orbital periods of Earth and Venus are close to 8:13 and 243:395 resonances.
Before 2004, the last pair of transits were in December 1874 and December 1882. The first of a pair of transits of Venus in the beginning of the 21st century took place on 8 June 2004 and the next will be on 6 June 2012. After 2012, subsequent transits of Venus will be in December 2117 and December 2125.
A transit of Venus can be safely observed by taking the same precautions used when observing the partial phases of a solar eclipse. Staring at the brilliant disk of the Sun (the photosphere) with the unprotected eye can quickly cause serious and often permanent eye damage
Experimentation:
Of all the materials' experimented: I have settled with
10 Cms FL Double Concave mirror of 50 mm dia or 2 “
Flat front coated mirror with 30’ FL!
Other projection technique like cone projection which is using large funnel or cone with a covering of tracing paper or a cinema screen!
Costs Item wise:
Concave mirror:
10 cms FL Concave mirror of 50 mm dia is costing Rs. 17 / 40 US Cents
Plastic ball 6 inch dia 10 Rs/ 20 US Cents
Chart paper 5 Rs / 10 US cents
A cardboard sheet 10 Rs/ 20 US Cents
Total cost: 42 Rs / 81 Cents US / 55 British Pence
Flat coated mirror:
Rectangular / Square Mirror of 2 inch dia is about Rs 100 or 2 USD if ordered in bulk not less than 100 pieces than Rs. 75 / 1.5 USD
VLFL: Rs. 400 / 8 USD
Ball of 6 inch dia: Rs. 10!
Chart paper: Rs. 5
A cardboard sheet: Rs. 10
Total cost: Rs. 525 or 10 USD or £ 7
Cone projection I am not elaborating now as it is deeply known to many!
Construction:
The construction of the ball projection is simple and easy. This method might have been known to many astronomers or they claim to know but sadly only few really attempt or experiment on such simple methods or tell others to experiment on such easy to use ones!
Since, I don’t have access to good solar telescopes or filters as what is available here is not of good or great quality as they are Chinese made and filters just fade out after 3 months of use! So, I was scratching my head on finding an easy way to see the spots and also to see the happening of transit!
In Indian Institute of Astrophysics workshop on day time astronomy I was discussing various ideas with fellow amateur and professional astronomers and there I got a spark of idea from Navnirmiti a Poona / Kolapur based Indian astronomy group whom had placed a ball projection with a front coated mirror as an idea. They are into spreading of ancient Indian astronomy using simple aids! I just improvised that idea by using convex mirrors as it is easy to procure and almost every school will have one!
Coming to our story, as flat coated and VLFL lens are bit costly and many will hesitate to buy also, there is a possibility of makers insisting only bulk supply, I wanted to use simple available alternatives. I wanted to test convex and concave mirrors and lenses! Hence, I bought 2 one metre and 10 Cms FL concave and convex mirrors and lenses.
On my experimentations with candles which usually did in Physics labs, to ascertain the image quality and to get an idea of actual FL of the mirrors! I found that FL of concave mirror is about 1 to 2 times the actual marked FL. My 10 cms FL concave mirror had clear image at 20 cms! While 1 Metre FL produced good but small image at 2 metres! I am not going into formula as I never understood formula or maths! I just settle for practical and trial & error methods!
Now coming to construction:
This is by far the simplest method to project the Sun's image, which works because the sunlight’s intensity is so strong it outshines everything. This experiment can be done in any room which has a window or door opening outside, and which can be sufficiently darkened by putting dark cloth over the places from where light enters the room. Complete darkness is not necessary.
Just how much darkness is needed you can discover for yourself by trial and error. However, the darker the room the better the results. If not use a white chart sheet glued to a cardboard or to a wall! I would suggest use of a large carton with one side flaps removed and a 6 – 7 inch dia hole created on one side as a window to see and photograph the casted image and a large square sheet of chart paper glued on the inside wall/flap of the carton as a screen! This contraption will be your dark room or projection studio! But in these carton and chart projection, willy nilly one has to project when the sun is shining and sharpness and contract will be low due to outshining sun light as in the image attached i.e for projection outside in a open area!
You can make a powerful sun telescope at very low cost with a plastic ball and mirror. The ball provides a sensitive but steady mount. As in any good telescope the mount is as important as the optics. The optics is provided by the pocket mirror / Concave or front coated mirror, if you don't have a hollow plastic ball, a watermelon or a pumpkin or a soccer ball can also provide a good mount. Just improvise!
Make a small hole in the plastic ball and fill the hollow with sand as fully as possible. Seal the hole with tape. If using fruits or playing ball just glue to the object!
Now cover the mirror with an opaque paper screen except for a circular disc of diameter 2 cm at its centre. Your optics is ready. Fix the mirror on the ball with adhesive tape. I just glued to the ball and didn’t cover as covering a convex will affect the image projected.
A cylindrical ring or a packing tape spool forms the base for the ball and mirror. The ball can be set at any angle in its base. The sand inside adds to its weight and makes it stable. Your solar telescope is now ready for use.
Ball Projector and VLFL
VLFL placed in front of the ball projector.
Image of the sun with Ball projector placed at 10 meters from the wall, without any aperture or lens.
Image of the Sun with Ball projector placed at 10 meters from the wall, VLFL placed in front of the ball projector
Place the ball and mirror on a stool outside the room in the sunshine. Adjust the angle of the mirror so that it projects the sun into the darkroom on a white screen. Increase the distance of the mirror from the screen to around 30-40 metres. At this distance you will get a nice big image of the sun around 35 cm in diameter.
Image as seen via front coated mirror and VLFL
Image via 50 mm 10 Cms FL double concave Mirror the spot is AR 1396 that was visible on 14/01/2012
Believe it or not, but with this simple projector you can actually see sunspots and some dark filaments on the sun. There are two ways to improve the resolution of the image. The first is to adjust the distance between the projector and the screen till you get the sharpest image of the sunspots.
The second is to improve the image far sharper and better we need to use a VLFL convex lens just on the FL and adjust the mirror and lens to get a clear image! (Further refinement can be obtained by using elliptical apertures on the mirror depending on the sun's position in the sky. But this is only for the perfectionists). For best results use trial and error, this always works better than theory. Practice now till May end and you will be ready for the 6th of June 2012. A point to note: to get round image the screen to be exactly opposite the mirror and sun to be diagonally on the other side left or right. Experimentations will make one to have better ideas!
I have made some improvements to the design
I have used 1 metre FL concave lens to get a erect image of 1 foot
we can also use convex but we'll get a inverted good image
This amazing little optical device is really a powerful telescope with which one can get sun images as large as one wishes, limited only by the size of your dark room and size of the lens or mirror. For very large image (one meter diameter, and even larger depending upon the size of the mirror) you will have to also increase the size of the mirror aperture. Use trial and error for best results.
While I was discussing with my young astronomy friend Balaji Muthusubramaniam on projection. We got some idea on these:
1. Using a convex mirror of 10 cms FL
2. At FL point, place a concave lens of your desired FL
3. Try to see the image on the screen
4. we need to adjust the mirror and lens and screen depending on sun's position, so improvise by trial and error!
This image below is based on the idea suggested by balaji is not tested on ground by me but good on theory: I am discussing through him with some PhD research scholars of Indian Institute of Technology, Madras to get better and big image on a short distance. Hope for best!
If using flat front coated mirror: Place the ball with mirror on a holder which is your tripod! Place the VLFL on its front diagonally and adjust both to get a good image! On VLFL: It is commonly believed that a convex lens concentrates the light from the Sun. This however is true only if the focal length is small. As the focal length of the lens increases the size of the Sun's image increases. The relation is the same as for a pinhole projector. Image diameter = focal length of lens / 110. For a very long focal length (VLFL), the diameter of the Sun's image can be quite large, larger than the lens itself. VLFL lenses with focal length of 4 metres and ten metres. The second lens gives a large image of the sun more than 9 cm in diameter. For a 90 mm diameter lens with a focal length of 10 metres, the image of the Sun will be larger than the lens itself, showing that a convex lens doesn't necessarily concentrate light. Using a VLFL convex lens, fixed within a cardboard shade with a hole cut in the centre, you can get a nice big image of the Sun on which sunspots & filaments are clearly visible, if the lens is of good quality.
There is another way to see the sun but this for those with a laptop: Take a small tube say 10 – 12 cms long not more than that! On one end place a short focal length lens and ensure it is covered with a solar film as seen in eclipse goggles!
Short length tube cam recorder and front coated mirror + VLFL
Image as seen in the laptop!
Cover lens with that film and place it on one of the tube’s end and on the other end connect a cheap webcam or a CCTV cam! Remove all those coverings before inserting the cam into other open end and secure the cam with tapes and ensure the cam end is totally covered not to let an iota of light to enter inside the tube. Light’s only entry is through the filtered lens. Place it on a small tripod and connect to your laptop or PC, position it on the sun! If the chip is small then I am sure the image will be there for 10 mins atleast and if moves adjust slightly to get centre of the lens. One can see the spots, transiting planets and ISS and record the image! But one cannot see the prominences etc! Currently the front coated mirrors are being made by my friend Mr. Chander Devgan. I have used some of his images here with permission.
Good luck for you all on successful outcome on experimenting with these ideas! Also, good viewing during Venus eclipse. Here I am afraid the section might be lost due to advancement of south westerly monsoon as upto latitude 16 deg monsoon would have covered on that date and it would be overcast here at this latitude as monsoon usually settles over my city around June 6th with 6 days either side as probable dates of ingress!
This artist's conception illustrates Kepler-22b, a planet known to comfortably circle in the habitable zone of a sun-like star. It is the first planet that NASA's Kepler mission has confirmed to orbit in a star's habitable zone -- the region around a star where liquid water, a requirement for life on Earth, could persist. The planet is 2.4 times the size of Earth, making it the smallest yet found to orbit in the middle of the habitable zone of a star like our sun.
Scientists do not yet know if the planet has a predominantly rocky, gaseous or liquid composition. It's possible that the world would have clouds in its atmosphere, as depicted here in the artist's interpretation.
Image credit: NASA/Ames/JPL-Caltech
Astronomers have confirmed the existence of an Earth-like planet in the "habitable zone" around a star not unlike our own.
The planet, Kepler 22-b, lies about 600 light-years away and is about 2.4 times the size of Earth, and has a temperature of about 22C.
It is the closest confirmed planet yet to one like ours - an "Earth 2.0".
However, the team does not yet know if Kepler 22-b is made mostly of rock, gas or liquid.
During the conference at which the result was announced, the Kepler team also said that it had spotted some 1,094 new candidate planets - nearly doubling the telescope's haul of potential far-flung worlds.
Kepler 22-b was one of 54 exoplanet candidates in habitable zones reported by the Kepler team in February, and is just the first to be formally confirmed using other telescopes.
More of these "Earth 2.0" candidates are likely to be confirmed in the near future, though a redefinition of the habitable zone's boundaries has brought that number down to 48. Ten of those are Earth-sized. 'Superb opportunity' The Kepler space telescope was designed to look at a fixed swathe of the night sky, staring intently at about 150,000 stars. The telescope is sensitive enough to see when a planet passes in front of its host star, dimming the star's light by a minuscule amount.
Kepler identifies these slight changes in starlight as candidate planets, which are then confirmed by further observations by Kepler and other telescopes in orbit and on Earth.
Kepler Space Telescope
Stares fixedly at a patch corresponding to 1/400th of the sky
Looks at more than 155,000 stars
Has so far found 2,326 candidate planets
Among them are 207 Earth-sized planets, 10 of which are in the "habitable zone" where liquid water can exist
Kepler 22-b lies 15% closer to its sun than the Earth is to our Sun, and its year takes about 290 days. However, the planet's host star puts out about 25% less light, keeping the planet at its balmy temperature that would support the existence of liquid water.
The Kepler team had to wait for three passes of the planet before upping its status from "candidate" to "confirmed".
"Fortune smiled upon us with the detection of this planet," said William Borucki, Kepler principal investigator at Nasa's Ames Research Center.
"The first transit was captured just three days after we declared the spacecraft operationally ready. We witnessed the defining third transit over the 2010 holiday season."
The results were announced at the Kepler telescope's first science conference, alongside the staggering number of new candidate planets. The total number of candidates spotted by the telescope is now 2,326 - of which 207 are approximately Earth-sized.
In total, the results suggest that planets ranging from Earth-sized to about four times Earth's size - so-called "super-Earths" - may be more common than previously thought.
As candidates for planets similar to Earth are confirmed, the Search for Extraterrestrial Intelligence (Seti) has a narrower focus for its ongoing hunt.
"This is a superb opportunity for Seti observations," said Jill Tarter, the director of the Center for Seti Research at the Seti Institute.
"For the first time, we can point our telescopes at stars, and know that those stars actually host planetary systems - including at least one that begins to approximate an Earth analogue in the habitable zone around its host star.
Kepler-22b -- Comfortably Circling within the Habitable Zone
This diagram compares our own solar system to Kepler-22, a star system containing the first "habitable zone" planet discovered by NASA's Kepler mission. The habitable zone is the sweet spot around a star where temperatures are right for water to exist in its liquid form. Liquid water is essential for life on Earth.
Kepler-22's star is a bit smaller than our sun, so its habitable zone is slightly closer in. The diagram shows an artist's rendering of the planet comfortably orbiting within the habitable zone, similar to where Earth circles the sun. Kepler-22b has a yearly orbit of 289 days. The planet is the smallest known to orbit in the middle of the habitable zone of a sun-like star. It's about 2.4 times the size of Earth.
Image credit: NASA/Ames/JPL-Caltech
NASA's Kepler mission has confirmed its first planet in the "habitable zone," the region where liquid water could exist on a planet’s surface. Kepler also has discovered more than 1,000 new planet candidates, nearly doubling its previously known count. Ten of these candidates are near-Earth-size and orbit in the habitable zone of their host star. Candidates require follow-up observations to verify they are actual planets.
The newly confirmed planet, Kepler-22b, is the smallest yet found to orbit in the middle of the habitable zone of a star similar to our sun. The planet is about 2.4 times the radius of Earth. Scientists don't yet know if Kepler-22b has a predominantly rocky, gaseous or liquid composition, but its discovery is a step closer to finding Earth-like planets.
Previous research hinted at the existence of near-Earth-size planets in habitable zones, but clear confirmation proved elusive. Two other small planets orbiting stars smaller and cooler than our sun recently were confirmed on the very edges of the habitable zone, with orbits more closely resembling those of Venus and Mars.
"This is a major milestone on the road to finding Earth's twin," said Douglas Hudgins, Kepler program scientist at NASA Headquarters in Washington. "Kepler's results continue to demonstrate the importance of NASA's science missions, which aim to answer some of the biggest questions about our place in the universe."
Kepler discovers planets and planet candidates by measuring dips in the brightness of more than 150,000 stars to search for planets that cross in front, or "transit," the stars. Kepler requires at least three transits to verify a signal as a planet.
"Fortune smiled upon us with the detection of this planet," said William Borucki, Kepler principal investigator at NASA Ames Research Center at Moffett Field, Calif., who led the team that discovered Kepler-22b. "The first transit was captured just three days after we declared the spacecraft operationally ready. We witnessed the defining third transit over the 2010 holiday season."
The Kepler science team uses ground-based telescopes and the Spitzer Space Telescope to review observations on planet candidates the spacecraft finds. The star field that Kepler observes in the constellations Cygnus and Lyra can only be seen from ground-based observatories in spring through early fall. The data from these other observations help determine which candidates can be validated as planets.
Kepler-22b is located 600 light-years away. While the planet is larger than Earth, its orbit of 290 days around a sun-like star resembles that of our world. The planet's host star belongs to the same class as our sun, called G-type, although it is slightly smaller and cooler.
Of the 54 habitable zone planet candidates reported in February 2011, Kepler-22b is the first to be confirmed. This milestone will be published in The Astrophysical Journal.
The Kepler team is hosting its inaugural science conference at Ames Dec. 5-9, announcing 1,094 new planet candidate discoveries. Since the last catalog was released in February, the number of planet candidates identified by Kepler has increased by 89 percent and now totals 2,326. Of these, 207 are approximately Earth-size, 680 are super Earth-size, 1,181 are Neptune-size, 203 are Jupiter-size and 55 are larger than Jupiter.
The findings, based on observations conducted May 2009 to September 2010, show a dramatic increase in the numbers of smaller-size planet candidates.
Kepler observed many large planets in small orbits early in its mission, which were reflected in the February data release. Having had more time to observe three transits of planets with longer orbital periods, the new data suggest that planets one to four times the size of Earth may be abundant in the galaxy.
The number of Earth-size and super Earth-size candidates has increased by more than 200 and 140 percent since February, respectively.
There are 48 planet candidates in their star's habitable zone. While this is a decrease from the 54 reported in February, the Kepler team has applied a stricter definition of what constitutes a habitable zone in the new catalog, to account for the warming effect of atmospheres, which would move the zone away from the star, out to longer orbital periods.
"The tremendous growth in the number of Earth-size candidates tells us that we're honing in on the planets Kepler was designed to detect: those that are not only Earth-size, but also are potentially habitable," said Natalie Batalha, Kepler deputy science team lead at San Jose State University in San Jose, Calif. "The more data we collect, the keener our eye for finding the smallest planets out at longer orbital periods."
NASA's Ames Research Center manages Kepler's ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development.
Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.
The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data. Kepler is NASA's 10th Discovery Mission and is funded by NASA's Science Mission Directorate at the agency's headquarters.
In the serene corridors of the Indian Institute of Astrophysics, Bangalore, I recently had the privilege of attending a daytime workshop on astronomy. Amidst stimulating discussions and celestial charts, I was drawn into the fascinating world of Shri Pathani Samanta Chandrasekhar — a name that shines quietly yet powerfully in the annals of Indian scientific thought.
This reflection is divided into two parts: a brief historical sketch and a deeper exploration of his astronomical insights. In India, Astrology and Astronomy have long been interwoven — like two sides of the same cosmic coin. Indian astrology, in its authentic form, rests largely on astronomical observation, nearly eighty per cent science and twenty per cent statistical reasoning.
Mahamahopadhyaya Chandra Sekhar Simha Samanta Harichandan Mohapatra, known reverently in Odisha as Pathani Samanta, stands shoulder to shoulder with stalwarts such as Aryabhata, Varahamihira, Brahmagupta, and Bhaskaracharya. He was perhaps the only true scientific astrologer of modern India, a bridge between the ancient Siddhantic tradition and the emerging rational spirit of the 19th century.
Uninfluenced by colonial education, Samanta taught himself Sanskrit and immersed in traditional Indian astronomy and astrology. From humble materials — bamboo strips, wooden sticks, and simple cords — he crafted precision instruments with remarkable ingenuity. His observations, often made under open skies and recorded by lamplight, were gathered into a masterwork of scientific poetry — his celebrated treatise, the Siddhanta Darpana.
Serving as Chief Court Astrologer to the King of Puri and the Jagannath Temple, Samanta Chandrasekhar embodied both devotion and discipline. Legend has it that he predicted the date of his own death, and passed away exactly as foretold. His manual computation of the Venus Transit of 1874, using homemade devices and even reflections of oil on water, reveals both his creativity and the purity of his scientific pursuit. That same year, he granted his only interview to an American magazine — a record still preserved in the archives of the Government of Odisha.
Born on 13 December 1835 (Pausha Krishna Ashtami, Saka Year 1757) in Khandapara, now in Nayagarh district, he grew up in a small princely state surrounded by hills and forests. Then part of the Gadajat territories under indirect British rule, Khandapara covered just 244 square miles. It was ruled at the time by King Natabar Singh Mardaraj, Samanta’s nephew and the eleventh monarch of the dynasty.
His parents, Shyamabandhu and Bishnumali, were deeply spiritual. Having lost one son and two daughters in infancy, they named the new child Pathani Samanta — a name that would later echo through the corridors of Indian science.
Samanta’s complete name, Mahamahopadhyaya Chandrasekhar Singh Harichandan Mohapatra Samant, appears on his magnum opus Siddhanta Darpana, published by Calcutta University in 1899. The original manuscript, written on palm leaves in 2,500 Sanskrit verses, was painstakingly transcribed into the Oriya script by Samanta himself — a labour of love between scholarship and devotion.
He received his early education in Sanskrit under a local Brahmin teacher, mastering grammar, smritis, puranas, darshanas, and several kavyas. His fascination with the heavens began at the age of ten, when his uncle first pointed out the stars and shared the rudiments of astrology. Though he never attended a university, his relentless curiosity and self-discipline transformed him into one of India’s most remarkable self-taught astronomers.
The Siddhanta Darpana, composed entirely in Sanskrit verse, was hailed in 1899 by scholars across India and even abroad. Professor Jogesh Chandra Ray played a pivotal role in its publication, producing a Devanagari edition with support from the Kings of Athmalik and Mayurbhanj. Prof. Ray’s fifty-six-page English introduction became the window through which the world first glimpsed the profound mathematical elegance contained in Samanta’s work.
In 1893, the British Government honoured him with the title of Mahamahopadhyaya in recognition of his contribution to astronomy. Samanta Chandrasekhar passed away in 1904, but even today, most Oriya almanacs continue to rely on his astronomical formulations.
He was a keen observer, guided more by intuition and handmade instruments than by formal tools of modern science. His observations often challenged the classical Siddhantic models — a conflict that had earlier perplexed Sawai Jai Singh in the 18th century, inspiring him to build his great masonry observatories. The core issue was the same: the gradual detachment of Indian astronomy from empirical observation. Samanta’s work sought to restore that sacred link between sky and calculation — between the seen and the known.
The Celestial Grammar: Ayanamasa and the Transit of Venus
The precession of the equinoxes—known in Indian astronomy as Ayanamasa—was recognised by Indian astronomers as far back as the Vedic period. They understood that the shifting of the equinoctial points affected the positions of stars and planets over time. To account for this, they introduced what were called bīja corrections—mathematical adjustments made to keep celestial calculations accurate as centuries passed.
However, nearly a millennium before the time of Sawai Jai Singh and Pathani Samanta, the observational tradition had faded. The calculations of planetary positions, or ephemeral elements, were handed down without verification against the sky. Observation had given way to repetition.
Samanta Chandrasekhar sought to revive this lost link between observation and calculation. Drawing upon classical siddhantic methods, he created new sets of ephemeral elements for future predictions. Remarkably, though he operated within the traditional geocentric framework, his results showed impressive precision. His own planetary model, while geocentric in spirit, acknowledged that the other planets revolved around the Sun — a conceptual bridge between Indian and Western systems.
It is important to note that mathematically, the geocentric and heliocentric models can both yield accurate results for many observable events, provided the correct reference framework is used. Samanta may not have accepted the Copernican revolution, but that did not hinder his ability to predict and verify celestial phenomena with extraordinary accuracy. Among these, the most remarkable event during his lifetime was the Transit of Venus on 9 December 1874.
This rare astronomical spectacle — when Venus passes directly between the Earth and the Sun — was visible from India and much of the world. The subsequent transit, in 1882, was not visible from India. The next one observable from the subcontinent would not occur until 8 June 2004, over a century later, an event that rekindled global enthusiasm among astronomers and educators alike. The 2004 transit inspired many to recreate the historic measurements of the Earth–Sun distance, first attempted during earlier transits, through synchronised global observations.
Returning to 1874 — it must have been a period of great excitement for astronomers worldwide. Expeditions from Europe travelled to India to record the event, while observatories under the British administration prepared for precise measurement. Private observatories and princely states also participated enthusiastically. Chintaman Raghunathachary of the Madras Observatory, for instance, produced a popular pamphlet explaining the phenomenon, which was translated into several Indian languages, including Urdu.
Yet, in the quiet hills of Khandapara, far removed from the centres of colonial science, Pathani Samanta was making his own preparations. Whether he learned of the event through word of mouth or predicted it independently remains uncertain. Given his isolation and the absence of European scientific activity in Odisha at that time, it seems more likely that he predicted the transit himself, purely from his own calculations.
Arun Kumar Upadhyaya, in his translation of the Siddhanta Darpana, interprets one of Samanta’s Sanskrit verses as referring to this very event:
“Solar eclipse due to Shukra (Venus) —
To find the eclipse of the Sun by Shukra, their bimba (angular diameters) and the sizes of nearby tara-grahas (stars and planets) are described.
In the Kali year 4975 (1874 AD), a solar eclipse due to Shukra occurred in Vrischika Rasi (Scorpio).
The bimba of Shukra was observed as 1/32 of the Sun’s bimba, equal to 650 yojanas.
Thus it is proven that the apparent sizes of Shukra and other planets are far smaller than that of the Sun.”
This verse reveals not only his observation of the Transit of Venus, but also his precise attempt to quantify the ratio of their apparent diameters. On 9 December 1874, the Sun’s angular diameter measured 32 minutes 29 seconds of arc, while that of Venus was 1 minute 3 seconds of arc—a ratio of approximately 1:30.93, astonishingly close to Samanta’s estimate of 1:32.
Whether guided by distant rumours or by his own celestial mathematics, Pathani Samanta Chandrasekhar had indeed captured one of the most significant astronomical events of the 19th century — from a modest corner of Odisha, with nothing more than bamboo, oil, and his unerring intuition of the stars.
The Measure of Precision
The ratio of the apparent diameters of the Sun and Venus naturally varies from one transit to another, owing to the slight ellipticity of their orbits. For instance, during the Transit of Venus in 2004, the Sun’s apparent diameter was approximately 31 minutes and 31 seconds of arc, while that of Venus measured 58 seconds — giving a ratio of about 1:32.6. The closeness of this value to Pathani Samanta’s 1874 observation of 1:32 demonstrates how remarkably precise his measurement had been — especially given the means available to him.
What makes this achievement truly extraordinary is that Samanta’s observations were entirely non-telescopic. He relied solely on instruments crafted by hand — fashioned from bamboo, wood, string, and calibrated scales — and yet, his results paralleled the accuracy of contemporary European astronomers equipped with sophisticated telescopes.
In both the theoretical calculations and direct observation of the Transit of Venus, Pathani Samanta’s accomplishments may rightly be compared to those of Jeremiah Horrocks, the English astronomer who first predicted and observed the same celestial event in 1639. Yet, there is something quietly poignant about this parallel — for while Horrocks had the support of an emerging scientific Europe, Samanta worked in solitude, guided only by tradition, intellect, and sky. His brilliance shone, therefore, not merely in mathematical insight, but in the spirit of self-reliance that defined Indian scientific thought in the 19th century.
Even today, the name Pathani Samanta Chandrasekhar stands as a testament to the power of indigenous genius — a reminder that science, observation, and devotion need not be divided by geography or era. His Siddhanta Darpana remains a bridge between ancient cosmology and modern astronomy, its verses echoing both the rigour of mathematics and the reverence of a seeker gazing at the stars.
📌 4. Instruments of the Sky: Crafting Tools from Simplicity
What sets Pathani Samanta Chandrasekhar apart from many traditional astronomers is not just his theoretical brilliance, but his ingenious observational methodology. Samanta did not have access to imported telescopes or precision instruments. Instead, he made his own:
Gnomons and sundials with calibrated wooden scales
Angular measurement devices made from bamboo and string
Quadrants and cross-staffs improvised from natural materials
Despite this simplicity, his instruments produced remarkable accuracy — often rivaling those used in trained observatories of his time. Samanta’s creativity demonstrates that true observation lies not in the sophistication of the instrument, but the mind that uses it.
His designs reflect a deep understanding of geometry and mechanics, adapted for local materials and conditions. For example:
His wooden quadrants were calibrated against solar noon shadows
Bamboo scales were marked using repeated angular measurements with reference stars
He layered multiple readings to reduce observational error
These methods reveal a mind harmonising practical craft with abstract calculation, a fusion rarely seen among self-taught scientists.
📌 5. Bridging Two Worlds: Traditional Learning and Empirical Science
Samanta’s journey represents a bridge between two systems:
🔸 The Siddhantic Tradition
This ancient Indian mathematical astronomy, rooted in texts like the Surya Siddhanta, provided a rich framework of formulae, planetary theories, and timekeeping.
🔸 Empirical Observation
By restoring observation as the core measure of truth, Samanta revived what had been lost over centuries — a connection between sky and calculation.
Rather than rejecting tradition, he strengthened it with observational verification:
Where texts disagreed with the sky, he recorded evidence meticulously
Where classical tables lagged behind real positions, he recalculated them
In doing so, he showed that the Indian astronomical tradition was not a museum of ideas, but a living, evolving science.
📌 6. Contemporaries in Context: How Samanta Fit into Global Astronomy
When we situate Samanta among global astronomy of the 19th century:
Astronomer
Era
Contribution
Jeremiah Horrocks
1601–1641
First accurate prediction of Venus transit
Sawai Jai Singh II
1688–1743
Built observatories; modernised Indian astronomy
Umesh Chandra Dutta
19th c.
Popularising astronomy in Bengal
Pathani Samanta
1835–1904
Self-taught observer and astrologer
📌 7. Science and Spirituality: A Personal Symbiosis
One of the most fascinating features of Pathani Samanta’s work is how science and devotion coexisted in his worldview:
He saw celestial patterns not merely as mathematical entities, but as cosmic rhythms guiding life on Earth.
His Sanskrit verse was as much poetry as it was precision science.
Observation of the sky was for him a form of reverence, not just measurement.
This blend of empiricism and reverence distinguishes Samanta from many contemporaries — even in India — and resonates with modern movements that seek a holistic understanding of science and culture.
📌 8. The Legacy Today: Education, Inspiration, and Revival
Even more than a century after his passing, Pathani Samanta’s influence continues:
🔹 Almanacs and Panchangas
Many Oriya almanacs still base their calculations on principles Samanta championed — a testament to the robustness of his work.
🔹 Education and Outreach
His life serves as inspiration for students who lack access to traditional laboratories — proving that insight and perseverance can compensate for limited resources.
🔹 Reviving Indigenous Science
In an era where global science seeks inclusivity and pluralism, Samanta’s work is a model of how local knowledge systems contribute meaningfully to universal inquiry.
📌 9. Reflections: Why Samanta Matters in 2026
Today, as we observe transits with satellites and space probes, Samanta reminds us of a timeless truth:
The sky belongs to the curious, not just the equipped.
His life’s work speaks to educators, astronomers, and seekers alike:
✨ Curiosity fuels discovery
✨ Tools enhance insight — but intuition guides it
✨ Tradition enriches science when it embraces observation
Samanta was more than an astronomer of his age — he was a visionary who stood between worlds, thinking deeply with what he had, and teaching generations to look upward with both wonder and logic.
📌 10. Suggested Reading & Resources
Here are some directions for further exploration (beyond the PDF linked earlier):
📘 Indian Astronomical Traditions (anthologies that contextualize Samanta’s place in history)
📙 History of Venus Transit Observations (global comparisons from 17th to 21st century)
📗 Traditional Panchanga Calculations and Modern Astronomy (bridging ancient and contemporary methods)
Original authors and sources acknowledged with gratitude.
📖 Glossary
Ayanamasa – The precession of equinoxes; the slow shift of the equinoctial points along the ecliptic over centuries. Ephemeral Elements – Mathematical values describing the positions and motions of celestial bodies at a given time. Bīja Corrections – Periodic adjustments made to astronomical tables to account for gradual shifts caused by precession and other factors. Siddhantic – Relating to ancient Indian astronomical treatises such as the Surya Siddhanta. Transit of Venus – A rare celestial event in which Venus passes directly between the Earth and the Sun, appearing as a small black dot crossing the solar disc. Bimba – Apparent angular diameter or the visible size of a celestial object as seen from Earth. Yojana – An ancient Indian unit of distance, roughly equivalent to 12–15 kilometres. Geocentric / Heliocentric Systems – Models describing the structure of the solar system; geocentric places the Earth at the centre, heliocentric the Sun.
🎼 Coda: The Bamboo Astronomer
There is a quiet music in the life of Pathani Samanta Chandrasekhar — a rhythm that unites observation, devotion, and mathematical beauty. With a bamboo staff as his telescope and palm leaves as his observatory log, he built a universe out of simplicity.
His Siddhanta Darpana is more than a scientific document — it is a song of perseverance, echoing the harmony between intellect and faith. Every calculation he inscribed was a note in this composition; every observation, a beat that connected human curiosity to cosmic truth.
In a time when modern science was becoming mechanised, Samanta’s legacy reminds us that the human spirit of inquiry remains the most essential instrument of all.
🌌 Epilogue: The Endless Orbit
More than a century has passed since that December morning in 1874, when Pathani Samanta measured the shadow of Venus upon the Sun. The instruments he used have perished, but the precision of his mind endures.
In today’s world of digital telescopes and space observatories, his story invites us to look back — not out of nostalgia, but reverence. For it is not only data that defines astronomy, but wonder.
Pathani Samanta Chandrasekhar lives on — in every student who measures the stars with handmade instruments, in every teacher who bridges traditional wisdom with modern science, and in every stargazer who looks upward and whispers: The universe is within reach, if only we dare to observe.
Quotations from Siddhanta Darpana and translations by Arun Kumar Upadhyaya are acknowledged with due respect. Historical data, measurements, and astronomical context sourced from the Indian Institute of Astrophysics (IIA), Bangalore, and the referenced publication: Pathani Samanta Chandrasekhar — An Astronomer Extraordinaire.
No part of this article may be reproduced without citation or author permission.
கட்டுரை ஆசிரியர்: பாரத ரத்னா முனைவர் . அப்துல் கலாம் ( முன்னால் இந்திய ஜனாதிபதி மற்றும் இந்திய ஏவுகணைத் தொழில்நுட்பப் தந்தை)
உலக நாடுகளுடன் ஒப்பிடுகையில், நம் நாடு எல்லாத் துறைகளிலும் ஒரு படிக்கு மேல் இருக்க வேண்டும் என்பது தான் நம் ஒவ்வொருவரின் தீராத ஆவல், விருப்பம், எதிர்பார்ப்பு எல்லாம். எல்லோரது ஒத்துழைப்பும் இருந்தால் தான் இது போன்ற சாதனைகளைப் படைக்க முடியும்.
தகவல் தொழில் நுட்பத்தில் அமெரிக்காவையே அசைத்துப் பார்க்கும் நாம், அத்தொழில் நுட்பம் மேலும், தங்கு தடையின்றி தொடர, மின்சாரத் தேவையும் அவசியம் என்பதை உணர வேண்டும். மின் உற்பத்திக்கு தேவைப்படும் பொருட்கள் பற்றாக் குறையாக உள்ள இக்காலகட்டத்தில், அணுசக்தி மூலம் இதனை சரிக்கட்ட முடியும் என்பது விஞ்ஞானிகளின் கூற்று. நல்ல வேளையாக, தமிழகத்தில், கூடங்குளத்தில் அமையவுள்ள அணுமின் நிலையம் மூலம், நமது மின் தேவையை எளிதாக பூர்த்தி செய்து கொள்ளும் ஒரு சந்தர்ப்பம் தற்போது ஏற்பட்டிருக்கிறது. இதனை, நாம் நல்ல முறையில் பயன்படுத்திக் கொள்ள வேண்டும். அணுசக்தி என்றாலே ஏதோ ஒருவித பயம் பலரிடம் குடிகொண்டுள்ளது. ஆனால், எதிர் நீச்சல் போட்டால்தான் வாழ்க்கையில் முன்னேறமுடியும் என்பதை நம்பும் நாம், அதே துணிச்சலுடன் புதிய முயற்சிகளையும் வரவேற்க வேண்டும். பாதுகாப்பான அணு மின் நிலையங்களால் எந்தவிதமான பாதிப்பும் ஏற்படாது என்று பலரும் கூறியுள்ள நிலையில், உண்மை, நேர்மை, தூய்மை ஆகியவற்றின் வடிவமான நம் இந்திய முன்னாள் ஜனாதிபதி அப்துல் கலாமும் இதனையே வலியுறுத்தியுள்ளார். அணுமின் நிலையம் மற்றும் அதுதொடர்பாக அவரது கருத்துக்கள் இதோ....
தமிழகத்திலே உள்ள கூடங்குளத்தில் அமைந்துள்ள 2,000 மெகாவாட் மின்சாரம் உற்பத்தி செய்ய வேண்டி, அணுஉலை செயல்பட தயாராகிக்கொண்டு இருக்கும் நிலையில் அணுசக்தியைப்பற்றியும், அதன் விளைவுகளைப்பற்றியும் நாட்டில் சில விவாதம் நடந்து வரும் இவ்வேளையில், சில உண்மைகளையும், அணுசக்தியின்
நன்மைகளைப் பற்றியும், இயற்கைச்சீற்றங்களினால் அதற்கு ஏற்படும் விளைவுகளைப்பற்றியும், அணுஉலைகளின் நம்பகத்தன்மை மற்றும் பாதுகாப்பு போன்ற விஷயங்களை அறிவார்ந்த முறையில் அணுகி, அதைப் பற்றி ஒரு தெளிவான கருத்தை என் அனுபவத்தோடு, உலக அனுபவத்துடன் ஆராய்ந்து அதை நம் மக்களுடன் பகிர்ந்து கொள்ள விரும்புகிறேன். திருநெல்வேலி மாவட்டத்து மக்கள் அறிவார்ந்த மக்கள், அங்கேயே பிறந்து, அங்கேயே வளர்ந்து, அங்கேயே படித்து, அங்கிருந்து மட்டுமல்லாமல் உலகின் அனைத்து பகுதிகளுக்கும் சென்று தங்களது அறிவாற்றலால் அனைத்து மக்களையும், நாட்டையும் வளப்படுத்தும் மக்கள் தான் திருநெல்வேலியை சேர்ந்த மக்கள். அதைப்போலவே தமிழகம் இன்றைக்கு ஒரு அறிவார்ந்த நிலையில் வளர்ந்து, மாநிலத்தை வளப்படுத்தி, நாட்டை வளப்படுத்தி, மற்ற மாநிலங்களுக்கு எடுத்துக்காட்டாக பல்வேறு திறமைகளில் சிறப்பான மாநிலமாக தமிழகம் திகழ வேண்டிய வளர்ச்சிப்பாதையில் உள்ளது. அப்படிப்பட்ட தமிழகத்தில் திருநெல்வேலி மாவட்டம், இன்னும் ஒரு சில ஆண்டுகளில் இந்தியாவிலேயே வளர்ச்சி அடைந்த மாவட்டமாக மாற ஏதுவான சூழ்நிலை நிலவுகிறது.
அதற்கு முக்கிய அவசியமான கட்டமைப்பு என்ன? அதுதான் மின்சாரம், மின்சாரம், மின்சாரம். எப்படிப்பட்ட மின்சாரம், மக்களை பாதிக்காத, ஆபத்தில்லாத அணுமின்சார உற்பத்திதான் அதன் முக்கிய லட்சியம். இந்தியாவிலேயே ஒரே இடத்திலே 2000 மெகாவாட் மின்உற்பத்தி, இன்னும் சில ஆண்டுகளில் 4000 மெகாவாட் மின் உற்பத்தி அணுமின்சாரம் மூலம் நடைபெற இருக்கிறது என்பது தமிழகத்திற்கு மிகப்பெரிய செய்தி, திருநெல்வேலி மாவட்டத்திற்கு ஒரு அரும் பெரும் செய்தி, இந்தியாவில் இது முதன் முறையாக நடைபெற இருக்கிறது.கிட்டத்தட்ட 20,000 கோடி ரூபாய் முதலீடு திருநெல்வேலி மாவட்டத்திற்கு வர வாய்ப்பு உள்ளது. அது உற்பத்தி செய்யும் மின்சார உற்பத்தியில் கிட்டத்தட்ட 50 சதவீத மின்சாரம் தமிழகத்திற்கு கிடைக்க இருக்கிறது. எனவே வளமான திருநெல்வேலி மாவட்டம், வளமான கூடங்குளம் பகுதி, வலிமையான தமிழகத்தை நாம் அடையவேண்டும். அப்படிப்பட்ட லட்சியத்தை நோக்கி நாம் செல்லும் போது, ஜனநாயக நாட்டில் அணுசக்தி மின்சார உற்பத்தி பற்றி இயற்கையாக பலகருத்துக்கள் ஏற்பட வாய்ப்பு உள்ளது.
அதாவது அணுசக்தி மூலம் மின்சாரம் உற்பத்தி செய்வதற்கு உருவாகியுள்ள எதிர்ப்பை மூன்று விதமாக பார்க்கலாம். ஒன்று கூடங்குளம் பகுதியில் வாழும் மக்களுக்கே ஏற்பட்டுள்ள உண்மையான கேள்விகள், இரண்டாவது பூகோள - அரசியல் சக்திகளின் வர்த்தகப் போட்டிகளின் காரணமாக விளைந்த விளைவு (Dynamics of Geo&political and Market forces),, நாமல்ல நாடுதான் நம்மை விட முக்கியம் என்ற ஒரு அரிய கருத்தை அறிய முடியாதவர்களின் தாக்கம். முதலாவதாக மக்களின் உண்மையான உணர்வுகளுக்கு மதிப்பளித்து அவர்களது நியாயமான சந்தேகங்களை வகைப்படுத்தி, அந்த சந்தேகங்களை நிவர்த்தி செய்வது மிகவும் முக்கியம்.
மக்களின் மற்றும் மக்களின் கருத்தால் எதிரொலிக்கும் கேள்விகளை தெளிவாக்கி அவர்களுக்கு நம்பிக்கையை ஏற்படுத்துவது இரண்டாவது முக்கியம். இந்தியாவின் முன்னேற்றத்தை விரும்பாத, வளர்ச்சியை பிடிக்காதவர்களின் முயற்சியை பற்றியும், அவர்களின் அவதூறு பிரசாரங்களைப்பற்றியும் மத்திய, மாநில அரசுகள் பார்த்துக்கொள்ள வேண்டும்.
எனவே முதலில் மக்களின் கேள்விகள் என்ன? அவர்களின் நியாயமான பயம் என்ன? என்பதை பார்ப் போம்.
1.ஜப்பான் புகுஸிமா அணுஉலை எரிபொருள் சேமிப்பு கிடங்கில் சுனாமியால் கடல் நீர் சென்றதால், ஏற்பட்ட மின்சார தடையால் நிகழ்ந்த விபத்தை தொலைக்காட்சியில் பார்த்த மக்களுக்கு நியாய மாக ஏற்பட்ட பயம் தான் முதல் காரணம்.
2.இயற்கை சீற்றங்களினால் அணு உலை விபத்து ஏற்பட்டால், அதனால் கதிரியக்க வீச்சு ஏற்பட்டால் அப்பகுதி மக்களுக்கு பாதிப்பை ஏற்படுத்தும், அதனால் தைராய்டு கோளாறுகள், நுரையீரல் புற்று நோய், மலட்டுத்தன்மை போன்றவை வரும் என்று மக்கள் மத்தியில் பீதி ஏற்பட்டுள்ளது என்று கூறப்படுகிறது.
3.அணுசக்தி கழிவுகளை சேமித்து வைப்பது ஆபத்து, அணுசக்தி கழிவுகளை கடலில் கலக்கப்போகிறார்கள், அணுசக்தியால் உருவாகும் வெப்பத்தினால் உருவாகும் நீராவியினாலும், அணுசக்தி கழிவை குளிர்விக்க பயன் படும் நீரை மீண்டும் கடலில் கலந்தால் அதனால் மீன் வளத்திற்கு பாதிப்பு ஏற்படும். 500 மீட்டருக்கு மீன் பிடித்தலுக்கு தடை விதிக்கப்படும், அதனால் மீனவர்களின் வாழ்வாதாரம் பாதிக்கப்படும், என்ற பயம் நிலவுகிறது.
4.அணு உலையில் எரிபொருள் மாதிரியை இரவில் நிரப்பும் பொழுது வழக்கமாக ஏற்படும் சத்தத்தால் மக்கள் மத்தியில் பீதி ஏற்பட்டு விட்டது.
5.அணு உலையில் இயற்கைச் சீற்றத்தாலோ, கசிவாலோ விபத்து ஏற்பட்டால், உடனடியாக அப்பகுதி மக்கள், 90 கிலோ மீட்டர் தூரம் 2 மணி நேரத்திற்குள் வெளியேற்றப்
படவேண்டும் என்று சொல்கிறார்கள், சோதனை ஓட்டம் செய்து பார்க்கும் போது மக்களை உடனடியாக வெளியேற சொன்னதனால் மக்களுக்கு பயம் ஏற்பட்டு விட்டது. ஒருவேளை விபத்து நேர்ந்தால், சரியான சாலை வசதி, போக்குவரத்து வசதி இல்லாத நிலையில் , மக்கள் கதிர்வீச்சு ஆபத்து ஏற்பட்டால் தப்புவதற்கு போதுமான பாதுகாப்பு வசதிகள் செய்து தரப்படவில்லை, மக்கள் எப்படி தப்ப முடியும்.
6.10,000 பேருக்கு வேலை வாய்ப்பு செய்து தரப்படும் என்று கூறினார்கள், ஆனால் அந்த பகுதியை சேர்ந்த 35 பேருக்குத்தான் வேலைவாய்ப்பு தரப்பட்டுள்ளது, ஏன் வேலை வாய்ப்பை அளிக்கவில்லை
7.பேச்சிப்பாறை அணையில் இருந்து தண்ணீர் வரும் என்று சொன்னார்கள், கடல் நீரை சுத்திகரித்து நல்ல தண்ணீர் கிடைக்கும் என்று சொன்னார்கள், இரண்டும் கிடைக்கவில்லை.
இது போன்று பல்வேறு கேள்விகள் மக்கள் மனதில் ஏற்பட்டுள்ளன, சரியான கேள்விகளும் உண்டு, மிகைப்படுத்தப்பட்ட கேள்விகளும் உண்டு ஆனால் இந்த கேள்விகளுக்கு சரியான பதிலை தரவேண்டிய பொறுப்பு மத்திய அரசுக்கு உண்டு. மக்களின் மனதில் பய உணர்வை ஏற்படுத்திவிட்டு எவ்வித விஞ்ஞான முன்னேற்றத்தையும் மக்களுக்கான முன்னேற்றத்திற்கான வழியாக ஏறெடுத்துச்செல்ல முடியாது என்பதை முதலில் நாம் புரிந்து கொள்ளவேண்டும்.அணுசக்தி துறையோடு எனக்கு இருந்த 20 வருட அனுபவத்தின் காரணமாகவும், அணுசக்தி விஞ்ஞானிகளோடு எனக்கு இருந்த நெருக்கமான தொடர்பாலும், சமீப காலங்களில் இந்தியாவிலும், அமெ ரிக்கா, ரஷ்யா போன்ற நாடுகளிலும் அணுசக்தி, துறையை சேர்ந்த ஆராய்ச்சி நிலையங்களுக்கு சென்று அங்கு பணிபுரியும் விஞ்ஞானிகளுடனும், தொழில் நுட்ப வல்லுனர்களுடனும் கலந்துரையாடிய அனுபவத்தாலும், கடந்த 4 வருடங்களாக இந்திய கடற்கரை ஓரம் அமைந்துள்ள எல்லா அணுதி உற்பத்தி நிலையங்களுக்கும் சென்று, அந்த அணுசக்தி நிலையங்களின் உற்பத்தி செயல் திறனை பற்றியும் அதன் பாதுகாப்பு அம்சங்களை பற்றியும் மிகவும் விரிவாக ஆராய்ந்துள்ளேன்.
அதுமட்டுமல்ல கூடங்குளம் அணுமின் நிலையத்தையும் பார்வையிட்டு அதன் பாதுகாப்பு அம்சங்கள் பற்றியும் பல்வேறு காரணிகளைப்பற்றியும் அதாவது கடலோரத்தில் உள்ள இந்திய அணுமின் சக்தி நிலையங்களுக்கும் மற்ற நாடுகளில் உள்ள அணுமின் நிலையங்களுக்கும் என்ன வித்தியாசம், அதன் ஸ்திர தன்மை, பாதுகாப்பு தன்மை பற்றியும், இயற்கை பேரிடர் மற்றும் மனித தவறின் மூலம் ஏதேனும் விபத்து ஏற்பட்டால், அதை எப்படி சரி செய்ய முடியும் அதன் தாக்கத்தை சமன் செய்ய செய்யப்பட்டுள்ள மாற்று ஏற்பாடுகள் பற்றியும், செய்ய வேண்டிய பாதுகாப்பு நடவடிக்கைகள் பற்றியும் விரிவாக ஆலோசனை நடத்தியுள்ளேன். அத்துடன் என்னுடைய இருபதுக்கும் மேற்பட்ட வெளிநாட்டு பயணத்தின் போதும், ஆராய்ச்சி நிலையங்களிலும், கல்வி போதிக்கும் என்னுடைய பணி மூலமாகவும் செய்த ஆராய்ச்சிகளின் விளைவாக வும், அணுசக்தியைப்பற்றியும், எரிசக்தி சுதந்திரத்தைப்பற்றிய அறிவியல் சார்ந்த விளக்கங்களையும் ஆராய்ச்சி விளக்கங்களை விரிவாக விவாதித்தோம். அதன் விளைவாக நான் எனது நண்பர் தி. பொன்ராஜ் அவர்களுடன் சேர்ந்து இந்தியா
2030க்குள் எரிசக்தி சுதந்திரம் பெற எந்த அளவிற்கு அணுசக்தி முக்கியம் என்பதை பல மாதங்கள், தொடர்ச்சியாக ஆராய்ச்சி செய்ததன் பயனாக இந்த ஆராய்ச்சி கட்டுரையை ஆய்வின் முடிவுகளின் விளக்கத்தை மக்களுக்கு தெரிவிக்க நாங்கள் கடமைப்பட்டிருக்கிறோம். இந்த ஆய்வின் முடிவுகளையும், என்னுடைய கருத்தையும் பார்ப்பதற்கு முன்பாக உங்களுடன் ஒரு விஷயத்தை பகிர்ந்து கொள்ள விரும்புகிறேன்.
அதாவது, கரிகாலன் முடியாது என்று நினைத்திருந்தால் தமிழ்நாட்டில் கல்லணை கிடையாது. காட்டாற்று வெள்ளமென வரும் அகண்ட காவிரியை தடுத்து நிறுத்த அந்தக்காலத்து தொழில் நுட்பத்தை பயன் படுத்தி முதல் நூற்றாண்டில் (1Century AD) கல்லணை கட்டினானே கரிகாலன். எப்படி முடிந்தது அவனால், வெள்ளமென வரும் காவிரியால் கல்லணையை உடைந்து மக்களின் பேரழிவுக்கு காரணமாகிவிடும் என்று நினைத்திருந்தாலோ, பூகம்பத்தால் அணை உடைந்து விடும் என்று கரிகாலன் நினைத்திருந்தாலோ கல்லணை கட்டியிருக்க முடியாது. ஆயிரம் ஆண்டுகளாகியும் நம் கண்முன்னே சாட்சியாக இருக்கிறதே ராஜ ராஜ சோழன் கட்டிய தஞ்சை பெரிய கோவில். சுனாமியினால் கடல் கொண்டு அழிந்த பூம்புகார் போன்று, பூகம்பத்தின் காரணமாக, பெரிய கோவில் அழிந்து விடும் என்று நினைத்திருந்தால், தமிழர்களின் மாபெரும் கட்டிட கலையை உலகிற்கே பறைசாற்றும் விதமாக, எடுத்துக்காட்டாக இருக்கும் பெரிய கோவில் நமக்கு கிடைத்திருக்குமா.ஹோமி பாபா முடியாது என்று நினைத்திருந்தால், கதிரியக்கம் மக்களைப் பாதித்திருக்கும் என்று நினைத்திருந்தால், இன்றைக்கு 40 ஆண்டுகளாக பாதுகாப்பான அணுமின்சாரத்தை 4700 மெகாவாட் மின்சாரத்தை உற்பத்தி செய்திருக்க முடியாது, மருத்துவத்துறையிலே கேன்சர் நோயால் அவதிப்படும் மக்களுக்கு ஹீமோதெரெபி அளித்திருக்க முடியாது, விவசாயத்தின் விளைபொருளின் உற்பத்தியை பெருக்கி இருக்க முடியாது. உலக நாடுகளே இந்தியாவை மதிக்கும் வண்ணம் அணுசக்தி கொண்ட ஒரு வலிமையான நாடாக மாற்றியிருக்க முடியாது. எனவே முடியாது என்று நினைத்திருந்தால், ஆபத்து என்று பயந்திருந்தால் எதுவும் சாத்தியப்பட்டிருக்காது.
ஏன் கதிரியக்கத்தை முதன் முதலாக பிட்ச் பிளன்ட் (two uranium minerals, pitchblende and torbernite (also known as chalcolite).) என்ற உலோகத்தை தன் தலையில் சுமந்து அதை பற்றி ஆராய்ச்சி செய்து கண்டுபிடித்தாரே மேடம் மேரி க்யூரி. தனக்கே ஆபத்து அதனால் வரும் என்று தெரிந்தும் ஆராய்ச்சியின் நல்ல பயன் உலகத்திற்கு செல்ல வேண்டும் என்று, தொடர்ந்து ஆராய்ச்சி செய்து முதன் முதலாக கதிர்வீச்சிற்கு வேதியலிலும், கதிர்இயக்கத்திற்கு இயற்பியலிலும் 2 நோபல் பரிசைப்பெற்று, அந்த கதிரியக்கத்தாலேயே தன் இன்னுயிரை இழந்தாரே. அதுவல்லவா தியாகம்.
தன்னுயிரை இழந்து மண்ணுயிரை காத்த அன்னையல்லவா மேடம் க்யூரி. இன்றைக்கு அந்த கதிரியக்கத்தால் எத்தனை கேன்சர் நோயாளிகள் ஹீமோதெரபி மூலம் குணப்படுத்தப்படுகிறார்கள், விவசாயத்திற்கு தேவையான விதைகளை கதிரியக்கத்தினை பயன்படுத்தி அதன் விளைச்சலை அதிகரிக்க முடிகிறதே. இன்றைக்கு அணுசக்தியினால் உலகம் முழுதும் 4 லட்சம் மெகாவாட் மின்சாரம் உற்பத்தி செய்யப்படுகிறதே. அதே போல் அணுசக்தியில் யாருக்கும் நாம் சளைத்தவர்கள் இல்லை என்று சாதித்து காட்டினோமே, அந்த வழியில் நண்பர்களே முடியாது என்று எதுவும் இல்லை.
முடியாது, ஆபத்து, பயம் என்ற நோய் நம்மிடம் பல பேரிடம் அதிகமாக உள்ளது. அப்படிப்பட்ட இயலாதவர்களின் கூட்டத்தால், உபதேசத்தால் வரலாறு படைக்கப்பட வில்லை. வெறும் கூட்டத்தால் மாற்றத்தை கொண்டுவர முடியாது. முடியும் என்று நம்பும் மனிதனால் தான் வரலாறு படைக்கப்பட்டு இருக்கிறது, மாற்றம் இந்த உலகிலே வந்திருக்கிறது. இந்தியா வல்லரசாகும் என்று தவறான கருத்து பரப்பப்படுகிறது, வல்லரசு என்ற சித்தாந்தம் என்றோ போய்விட்டது. 2020க்குள் இந்தியா வளர்ந்த நாடாக மாற வேண்டும் என்பது தான் நம் மக்களின் லட்சியம்.